

HCF AND LCM EXAM-TYPE QUESTIONS

NO CALCULATOR

Ref: G131.3R1

A1 Express 204 as a product of its prime factors. Show your working clearly.	A2 Write 792 as a product of its prime factors. Show your working clearly.	A3 $1400 = 2^p \times 5^2 \times 7$ Find the value of <i>p</i> .	A4 Given that $120 = 2^3 \times 3 \times 5$ And that $n = 120 \times 108$ Write <i>n</i> as a product of powers of its prime factors.
B1 Find the highest common factor (HCF) of 90 and 252	B2 Find the lowest common multiple (LCM) of 24 and 42	B3 Find the highest common factor (HCF) and lowest common multiple (LCM) of 168 and 180	B4 Find the highest common factor (HCF) and lowest common multiple (LCM) of 72, 180 and 540
C1 $A = 2^3 \times 3 \times 5^2$ $B = 2^2 \times 3$ Find the HCF and LCM of A and B.	C2 $M = 2^4 \times 3^2 \times 7$ $N = 2^2 \times 3^2 \times 5$ Find the HCF and LCM of <i>M</i> and <i>N</i> .	C3 $2520 = 2^3 \times 3^2 \times 5 \times 7$ $3024 = 2^4 \times 3^3 \times 7$ Find the HCF & LCM of 2520 and 3024. Write your answer as a product of prime factors.	C4 740 880 = $2^4 \times 3^3 \times 5 \times 7^3$ 980 100 = $2^2 \times 3^4 \times 5^2 \times 11^2$ Find the highest common factor (HCF) of 740 800 and 980 100
D1 The highest common factor (HCF) of 90 and x is 18 The lowest common multiple (LCM) of 90 and x is 540 Find the value of x .	D2 The highest common factor (HCF) of x and 12 is 6 The lowest common multiple (LCM) of x and 12 is 180 Find the value of x .	D3 Find two numbers between 100 and 150 that have a HCF of 22.	D4 $360 = 2^4 \times 3^2 \times 5$ Write down three different factors of 360 with a sum between 90 and 100.

HCF AND LCM EXAM-TYPE QUESTIONS $HCF \times LCM = A \times B$ \Rightarrow $LCM = \frac{A \times B}{HCF}$ Ref: G131. 3R1				
A1 Express 204 as a product of its prime factors. Show your working clearly. $204 = 2^2 \times 3 \times 17$	A2 Write 792 as a product of its prime factors. Show your working clearly. $792 = 2^3 \times 3^2 \times 11$	A3 $1400 = 2^p \times 5^2 \times 7$ Find the value of p. $1400 = 2^3 \times 5^2 \times 7$ $\Rightarrow p = 3$	A4 Given that $120 = 2^3 \times 3 \times 5$ $108 = 2^2 \times 3^3$ $\therefore n = 2^3 \times 3 \times 5$ $2^2 \times 3^3$ $= 2^5 \times 3^4 \times 5$	
B1 $252 = 2^2 \times 3^2 \times 7$ $90 = 2 \times 3^2 \times 5$ <i>HCF</i> = $2 \times 3^2 = 18$	B2 $42 = 2 \cdot 3 \cdot 7$ $24 = 2^{3} \cdot 3$ <i>HCF</i> = 2 × 3 <i>LCM</i> = $2^{3} \times 3 \times 7 = 168$	B3 $168 = 2^{3} \cdot 3 \cdot 7$ $180 = 2^{2} \cdot 3^{2} \cdot 5$ $HCF = 2^{2} \times 3 = 12$ $LCM = 2^{3} \times 3^{2} \times 5 \times 7 = 2520$	B4 $540 = (2^{2} \times 3^{3} \times 5)$ $180 = 2^{2} \times 3^{2} \times 5$ $72 = (2^{3} \times 3^{2})$ <i>HCF</i> = $2^{2} \times 3^{2} = 36$ <i>LCM</i> = $2^{3} \times 3^{3} \times 5 = 1080$	
C1 $A = (2^{3}) (3) (5^{2})$ $B = (2^{2}) (3)$ $HCF = 2^{2} \times 3 (= 12)$ $LCM = 2^{3} \times 3 \times 5^{2} (= 600)$	C2 $M = (2^4 \times 3^3 \times 7)$ $N = (2^2 \times 3^2 \times 5)$ $HCF = 2^2 \times 3^2 (= 36)$ $LCM = 2^4 \times 3^2 \times 5 \times 7 (= 5040)$	C3 $2520 = (2^3) \times (3^2) \times (5^{\circ}) (7^{\circ})$ $3024 = (2^4) \times (3^3) \times (7^{\circ})$ $HCF = (2^3) \times (3^2) \times (7^{\circ})$ $HCF = (2^4) \times (3^3) \times (7^{\circ})$ $LCM = (2^4) \times (3^3) \times (5^{\circ}) \times (7^{\circ})$	C4 740 880 = $2^4 \times 3^3 \times 5^2 \times 7^3$ 980 100 = $2^2 \times 3^4 \times 5^2 \times 11^2$ HCF = $2^2 \times 3^3 \times 5 = 540$	
D1 HCF, $18 = 2 \times 3^{2}$ LCM, $540 = 2^{2} \times 3^{3} \times 5$ $90 = 2 \times 3^{2} \times 5$ $x = \frac{2 \times 3^{2} \times 2^{2} \times 3^{3} \times 5}{2 \times 3^{2} \times 5} = 108$	D2 HCF, 6 = 2×3 LCM, 180 = 2 ² ×3 ² ×5 12 = 2 ² ×3 $x = \frac{2 \times 3 \times 2^{2} \times 3^{2} \times 5}{2^{2} \times 3} = 90$	D3 Find two numbers between 100 and 150 that have a HCF of 22. They must both be multiples of 22, so $5 \times 22 = 110$ $6 \times 22 = 132$	D4 $360 = 2^4 \times 3^2 \times 5$ Writing s list of the different factors gives 2,4,8,3,9,5,15,45,6,12,24,18,36, This gives lots of answers, such as 15 + 36 + 45	

Worksheets, Videos, Interactive Quizzes and Exam Solutions