SETS

INTERSECTION AND UNION

$\begin{aligned} & \mathbf{A 1} \\ & A=\{2,3,5,7,11\} \\ & B=\{3,5,7,9\} \end{aligned}$ List $A \cup B$	A2 $A=\{$ factors of 100$\}$ $B=\{$ multiples of 5$\}$ List $A \cap B$	A3 $\begin{aligned} & A=\{\mathrm{c}, \mathrm{~h}, \mathrm{i}, \mathrm{n}, \mathrm{a}\} \\ & B=\{\mathrm{i}, \mathrm{t}, \mathrm{a}, \mathrm{l}, \mathrm{y}\} \end{aligned}$ List $A \cup B$	A4 $\begin{aligned} & A=\{\mathrm{s}, \mathrm{u}, \mathrm{p}, \mathrm{e}, \mathrm{r}\} \\ & B=\{\mathrm{c}, \mathrm{o}, \mathrm{~m}, \mathrm{p}, \mathrm{u}, \mathrm{t}, \mathrm{e}, \mathrm{r}\} \end{aligned}$ List $A \cap B$
B1 $\begin{aligned} & A=\{1,3,6,10,15\} \\ & B=\{3,6,9,12\} \end{aligned}$ Find $\mathrm{n}(A \cup B)$	B2 $\begin{aligned} & S=\{\mathrm{s}, \mathrm{q}, \mathrm{u}, \mathrm{a}, \mathrm{r}, \mathrm{e}\} \\ & V=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\} \end{aligned}$ Find $\mathrm{n}(S \cap V)$	B3 $\begin{aligned} \mathcal{E} & =\{1,2,3,4,5,6,7,8\} \\ A & =\{2,3,5\} \end{aligned}$ Find $n\left(A^{\prime}\right)$	B4 $\begin{aligned} & M=\{2,4,6,8,10\} \\ & N=\{1,3,5,7,9\} \end{aligned}$ Find $\mathrm{n}(M \cap N)$
$\begin{aligned} & \hline \mathbf{C 1} \\ & A=\{2,4,6,8,10\} \\ & B=\{1,3,5,7,9\} \end{aligned}$ Explain why $A \cap B=\varnothing$	C2 $A=\{$ multiples of 5$\}$ $D=\{$ prime numbers $\}$ Is it true that $A \cap D=\varnothing$?	C3 $\begin{aligned} \mathcal{E}= & \{1,2,3,4,5,6,7,8,9,10\} \\ A= & \{\text { even numbers }\} \\ B= & \{\text { multiples of } 3\} \\ & x \in B \text { and } \quad x \notin A \end{aligned}$ What are the possible values of x ?	C4 $\begin{aligned} \mathcal{E}= & \{1,2,3,4,5,6,7,8,9\} \\ A= & \{1,3,5,7\} \\ B= & \{2,4,6,8\} \\ & x \in \mathcal{E} \text { and } x \notin A \cup B \end{aligned}$ What is the value of x ?
D1 $\mathcal{E}=\{$ even numbers $\}$ $A=\{2,4,6,8,10\}$ B is such that $A \cap B=\{4,8\}$ and $\mathrm{n}(B)=3$. List a possible set B.	D2 $\begin{aligned} & \mathcal{E}=\{1,2,3,4,5,6,7\} \\ & A=\{2,3,4,5\} \end{aligned}$ C is such that $A \cap C=\{4,5\}$ and $\mathrm{n}(C)=4$. List a possible set C.	D3 $\begin{aligned} & \mathcal{E}=\{2,4,6,8,10,12,14\} \\ & A=\{2,6,8,12\} \end{aligned}$ C is such that $A \cap C=\varnothing$ and $\mathrm{n}(C)=3$. List set C.	D4 $\begin{aligned} & A=\{3,4,5\} \\ & A \cup B=\{1,2,3,4,5\} \end{aligned}$ B has as few members as possible. List set B.

SETS

INTERSECTION AND UNION

A1	A2	A3	A4
$A=\{2,3,5,7,11\}$	$A=\{$ factors of 100$\}$	$A=\{\mathrm{c}, \mathrm{h}, \mathrm{i}, \mathrm{n}, \mathrm{a}\}$	$A=\{\mathrm{s}, \mathrm{u}, \mathrm{p}, \mathrm{e}, \mathrm{r}\}$
$B=\{3,5,7,9\}$	$B=$ \{multiples of 5\}	$B=\{\mathrm{i}, \mathrm{t}, \mathrm{a}, \mathrm{l}, \mathrm{y}\}$	$B=\{\mathrm{c}, \mathrm{o}, \mathrm{m}, \mathrm{p}, \mathrm{u}, \mathrm{t}, \mathrm{e}, \mathrm{r}\}$
List $A \cup B \quad\{2,3,5,7,11,9\}$	List $A \cap B \quad\{5,10,20,50,100\}$	List $A \cup B \quad\{\mathrm{c}, \mathrm{h}, \mathrm{i}, \mathrm{n}, \mathrm{a}, \mathrm{t}, \mathrm{l}, \mathrm{y}\}$	List $A \cap B \quad\{\mathrm{u}, \mathrm{p}, \mathrm{e}, \mathrm{r}\}$
$\begin{aligned} & \text { B1 } A \cup B=\{1,3,6,10,15,9,12\} \\ & A=\{1,3,6,10,15\} \\ & B=\{3,6,9,12\} \end{aligned}$	$\begin{aligned} & \text { B2 } S \cap V=\{u, a, \mathrm{e}\} \\ & S=\{\mathrm{s}, \mathrm{q}, \mathrm{u}, \mathrm{a}, \mathrm{r}, \mathrm{e}\} \\ & V=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\} \end{aligned}$	$\begin{aligned} & \text { B3 } \quad A^{\prime}=\{1,4,6,7,8\} \\ & \mathcal{E}=\{1,2,3,4,5,6,7,8\} \\ & A=\{2,3,5\} \end{aligned}$	$\begin{aligned} & \text { B4 } M \cap N=\varnothing \\ & M=\{2,4,6,8,10\} \\ & N=\{1,3,5,7,9\} \end{aligned}$
Find $\mathrm{n}(A \cup B) \quad=7$	Find $\mathrm{n}(S \cap V)=3$	Find $\mathrm{n}\left(A^{\prime}\right)=5$	Find $\mathrm{n}(M \cap N)=0$
C1	C2	C3 $\quad x=3$ or 9	C4 $\quad x=9$
$A=\{2,4,6,8,10\}$	$A=\{\text { multiples of } 5\}$	$\mathcal{E}=\{1,2,3,4,5,6,7,8,9,10\}$	$\mathcal{E}=\{1,2,3,4,5,6,7,8,9\}$
$B=\{1,3,5,7,9\}$	$D=\{\text { prime numbers }\}$	$A=$ \{even numbers $\}$	$A=\{1,3,5,7\}$
Explain why $A \cap B=\varnothing$	Is it true that $A \cap D=\varnothing$?	$B=\{\text { multiples of } 3\}$	$B=\{2,4,6,8\}$
There are NOT ANY elements IN BOTH set A and set B	It's FALSE - number ' 5 ' is in both sets	$x \in B \text { and } x \notin A$ What are the possible values of x ?	$x \in \mathcal{E} \text { and } \quad x \notin A \cup B$ What is the value of x ?
D1 $B=\{4,8$, any-even-number-	D2 $C=\{4,5,1,6\}$	D3 $C=\{4,10,14\}$	D4 $B=\{1,2\}$
$\mathcal{E}=\{$ even numbers $\}$ bigger-then-10 $\}$	$\mathcal{E}=\{1,2,3,4,5,6,7\} \quad\{4,5,1,7\}$	$\mathcal{E}=\{2,4,6,8,10,12,14\}$	$A=\{3,4,5\}$
$A=\{2,4,6,8,10\}$	$A=\{2,3,4,5\} \quad \text { or }\{4,5,6,7\}$	$A=\{2,6,8,12\}$	$A \cup B=\{1,2,3,4,5\}$
B is such that $A \cap B=\{4,8\}$ and $\mathrm{n}(B)=3$.	C is such that $A \cap C=\{4,5\}$ and $\mathrm{n}(C)=4$.	C is such that $A \cap C=\varnothing$ and $\mathrm{n}(C)=3$.	B has as few members as possible.
List a possible set B.	List a possible set C.	List set C.	List set B.

