

POLYGONS

Ref: G424. 5R1

A1 Write down a formula that allows you to calculate the size of an exterior angle (<i>E</i>) of a regular polygon with <i>n</i> sides.	A2 Write down a formula that relates the size of an exterior angle (<i>E</i>) and the size of an interior angle (<i>I</i>) of a polygon.	A3 Write down a formula that allows you to calculate the sum (S) of the interior angles in a regular polygon with <i>n</i> sides.	A4 Work out the size of an exterior angle of a regular polygon with 5 sides
B1 Work out the size of an interior angle of a regular polygon with 9 sides	B2 Each exterior angle of a regular polygon is 15°. Work out the number of sides the polygon has.	B3 Each interior angle of a regular polygon is 156°. Work out the number of sides the polygon has.	B4 Find the sum of the interior angles of a polygon with 7 sides
C1	C2	C3	C4
The size of each exterior angle of a regular polygon is 18°. Work out the sum of the interior angles of the polygon.	The sum of the interior angles of a polygon is 2700°. Work out the number of sides the polygon has.	The size of each interior angle of a regular polygon is 140° bigger than the size of each exterior angle. Work out the number of sides the polygon has.	The size of each interior angle of a regular polygon is 11 times the size of each exterior angle. Work out the number of sides the polygon has.

Maths Everyone.com

POLYGONS INTERIOR AND EXTERIOR ANGLES

Ref: G424. 5R1

A1 Write down a formula that allows you to calculate the size of an exterior angle (<i>E</i>) of a regular polygon with <i>n</i> sides. $E = \frac{360}{n}$	A2 Write down a formula that relates the size of an exterior angle (<i>E</i>) and the size of an interior angle (<i>I</i>) of a polygon. I + E = 180	A3 Write down a formula that allows you to calculate the sum (S) of the interior angles in a regular polygon with <i>n</i> sides. $Sum = (n-2) \times 180$	A4 Work out the size of an exterior angle of a regular polygon with 5 sides $\frac{360}{5} = 72^{\circ}$
B1 Work out the size of an interior angle of a regular polygon with 9 sides $Ext. = \frac{360}{9}$ Int. = 180 - 40 = 40 = 140°	B2 Each exterior angle of a regular polygon is 15°. Work out the number of sides the polygon has. $n = \frac{360}{15} = 24$	B3 Each interior angle of a regular polygon is 156°. $Ext. = 180 - 156 \qquad n = \frac{360}{24}$ $= 24 \qquad = 15$	B4 Find the sum of the interior angles of a polygon with 7 sides $Sum = (n-2) \times 180$ $= 5 \times 180$ $= 900^{\circ}$
C1 The size of each exterior angle of a regular polygon is 18°. $n = \frac{360}{18} \qquad Sum = (20 - 2) \times 180$ $= 20 \qquad = 3240^{\circ}$	C2 The sum of the interior angles of a polygon is 2700°. $(n-2) \times 180 = 2700$ n-2 = 15 n = 17	C3 x + (x + 140) = 180 2x + 140 = 180 $x = 20^{\circ}$ $n = \frac{360}{20}$ = 18	C4 $x + 11x = 180$ $n = \frac{360}{15}$ x = 15 $= 24$
D1 $n = \frac{360}{36}$ Ext. = $\frac{360}{20}$ = 10 = 18 2n = 20 Int. = 162°	D2 $E_{A} = \frac{360}{9} \qquad n_{B} = \frac{360}{10}$ $= 40^{\circ} \qquad = 36$ $\Rightarrow E_{B} = 10^{\circ}$	D3 $E_c = \frac{360}{12}$ $I_D = 160^{\circ}$ $= 30$ $E_D = 20$ $I_c = 150^{\circ}$ $n_D = \frac{360}{20}$ = 18	D4 $(n_E - 2) \times 180 = (n_F - 2) \times 180 + 900$ $n_E - n_F = 5$ $n_E + n_F = 25$ $n_E = 15$ $n_F = 10$

© 2018 Maths4Everyone.com

Worksheets, Videos, Interactive Quizzes and Exam Solutions