POLYGONS

INTERIOR AND EXTERIOR ANGLES

A1 Write down a formula that allows you to calculate the size of an exterior angle (E) of a regular polygon with n sides.	A2 Write down a formula that relates the size of an exterior angle (E) and the size of an interior angle (I) of a polygon.	A3 Write down a formula that allows you to calculate the sum (S) of the interior angles in a regular polygon with n sides.	A4 Work out the size of an exterior angle of a regular polygon with 5 sides		
B1 Work out the size of an interior angle of a regular polygon with 9 sides	B2 Each exterior angle of a regular polygon is 15°. Work out the number of sides the polygon has.	B3 Each interior angle of a regular polygon is 156°. Work out the number of sides the polygon has.	B4 Find the sum of the interior angles of a polygon with 7 sides		
C1 The size of each exterior angle of a regular polygon is 18°. Work out the sum of the interior angles of the polygon.	C2 The sum of the interior angles of a polygon is 2700°.	C3 Work out the number of sides the polygon has.	The size of each interior angle of a regular polygon is 140° bigger than the size of each exterior angle. Work out the number of sides the polygon has.		
D1	The size of each interior angle of a regular polygon is 11 times the size of each exterior angle. Work out the number of sides the polygon has.				
The size of each interior angle of a regular polygon with n sides is 144°. Work out the size of each interior angle of a regular polygon with $2 n$ sides.	D2 An exterior angle of regular polygon A is 30° bigger than an exterior angle of regular polygon \mathbf{B}.	D3 Polygon \mathbf{A} has 9 sides. Find the number of sides of polygon \mathbf{B}.	C interior angle of regular polygon 10° smaller than an interior angle of regular polygon \mathbf{D}. Polygon \mathbf{C} has 12 sides. Find the number of sides of polygon \mathbf{D}.		D4The sum of the interior angles in polygon \mathbf{E} is 900° more than the sum of the interior angles in polygon \mathbf{F}. The total number of sides of the two polygons is 25. How many sides in each polygon?
:---					

POLYGONS

INTERIOR AND EXTERIOR ANGLES

A1 Write down a formula that allows you to calculate the size of an exterior angle (E) of a regular polygon with n sides. $E=\frac{360}{n}$	A2 Write down a formula that relates the size of an exterior angle (E) and the size of an interior angle (I) of a polygon. $I+E=180$	A3 Write down a formula that allows you to calculate the sum (S) of the interior angles in a regular polygon with n sides. $\text { sum }=(n-2) \times 180$	A4 Work out the size of an exterior angle of a regular polygon with 5 sides $\frac{360}{5}=72^{\circ}$
B1 Work out the size of an interior angle of a regular polygon with 9 sides $\begin{aligned} \text { Ext. } & =\frac{360}{9} & \text { Int. } & =180-40 \\ & =40 & & =140^{\circ} \end{aligned}$	B2 Each exterior angle of a regular polygon is 15°. Work out the number of sides the polygon has. $n=\frac{360}{15}=24$	B3 Each interior angle of a regular polygon is 156°. $\begin{array}{rlrl} \text { Ext. } & =180-156 & n & =\frac{360}{24} \\ & =24 & & =15 \end{array}$	B4 Find the sum of the interior angles of a polygon with 7 sides $\begin{aligned} \text { Sum } & =(n-2) \times 180 \\ & =5 \times 180 \\ & =900^{\circ} \end{aligned}$
C1 The size of each exterior angle of a regular polygon is 18°. $\begin{aligned} n & =\frac{360}{18} & \text { Sum } & =(20-2) \times 180 \\ & =20 & & =3240^{\circ} \end{aligned}$	C2 The sum of the interior angles of a polygon is 2700°. $\begin{aligned} (n-2) \times 180 & =2700 \\ n-2 & =15 \\ n & =17 \end{aligned}$	C3 $\begin{array}{rlrl} x+(x+140) & =180 & n & =\frac{360}{20} \\ 2 x+140 & =180 & & =18 \end{array}$	C4 $\begin{array}{ll} x+11 x=180 & n=\frac{360}{15} \\ 12 x=180 & =24 \\ x=15 & \end{array}$
D1 $\begin{aligned} n & =\frac{360}{36} & \text { Ext. } & =\frac{360}{20} \\ & =10 & & =18 \\ 2 n & =20 & \text { Int. } & =162^{\circ} \end{aligned}$	D2 $\begin{aligned} E_{A} & =\frac{360}{9} & n_{B} & =\frac{360}{10} \\ & =40^{\circ} & & =36 \\ \Rightarrow E_{B} & =10^{\circ} & & \end{aligned}$	D3	D4 $\begin{aligned} &\left(n_{E}-2\right) \times 180=\left(n_{F}-2\right) \times 180+900 \\ & n_{E}-n_{F}=5 \\ & n_{E}+n_{F}=25 \\ & n_{E}=15 \quad n_{F}=10 \end{aligned}$

