maths4Everyone.com

RECURRING DECIMALS

EXAM-TYPE QUESTIONS

NO CALCULATOR

Ref: G115
1R1

A1 State the conditions under which a fraction can be written as a terminating decimal.	A2 State the conditions under which a fraction can be written as a recurring decimal.	A3 Which of the following can be written as terminating decimals: $\begin{array}{llllllll} \frac{2}{3} & & \frac{3}{4} & \frac{4}{9} & \frac{5}{6} & \frac{5}{8} & \frac{3}{7} & \frac{3}{5} \end{array}$	A4 Which of the following can be written as recurring decimals: $\begin{array}{llllll} \frac{5}{12} & \frac{7}{25} & \frac{3}{14} & \frac{5}{16} & \frac{5}{32} & \frac{5}{11} \end{array}$
B1 Show that $0.5=\frac{5}{9}$	B2 Show that $0.7 \dot{3}=\frac{11}{15}$	B3 Show that $0.61 \dot{6}=\frac{37}{60}$	B4 Show that $3.5 \dot{2}=3 \frac{47}{90}$
C1 Show that $0 . \dot{2} \dot{\bar{\prime}}=\frac{3}{11}$	C2 Show that $0.2 \dot{5} \dot{\overline{7}}=\frac{17}{66}$	C3 Show that $0 . \dot{4} 4 \dot{7}=\frac{149}{333}$	C4 Show that $2.5 \dot{i}=2 \frac{17}{33}$
D1 Work out 0.27×3, writing your answer as a fraction in its simplest terms.	D2 Work out $0.5 \dot{7}-0 . \dot{2} \dot{6}$, writing your answer as a fraction in its simplest terms.	D3 x is a whole number such that $1 \leq x \leq 9$ Write the recurring decimal $0.1 \dot{x}$ as a fraction in its simplest terms.	

RECURRING DECIMALS NOTE: Only one method of solution to each question is shown on this sheet,

EXAM-TYPE QUESTIONS
but other methods are also acceptable - check with your teacher

A1 If the prime factorisation of the denominator contains powers of 2 and 5 only, then the decimal expansion will be terminating.	A2	A3 Which of the following can be written as terminating decimals:	A4 Which of the following can be written as recurring decimals:
	If the prime factorisation of the denominator contains any		
	number other than a power of 2 or 5 , then the decimal expansion will be recurring.	$\frac{2}{3}\left(\frac{3}{4}\right)^{\frac{4}{9}} \quad \frac{5}{6}\left(\frac{5}{8}\right) \frac{3}{7}\left(\frac{3}{5}\right)$	((12$)_{\frac{7}{25}}^{\left(\frac{3}{14}\right)} \frac{5}{16} \quad \frac{5}{32}\left(\frac{5}{11}\right)$
B1$\left.\begin{array}{rl} x & =0.555555 \ldots \\ 10 x & =5.555555 \ldots \\ \hline 9 x & =5 \\ x & =\frac{5}{9} \end{array}\right\} \text { subtract }$	B2$\left.\begin{array}{rl} x & =0.733333 \ldots \\ 10 x & =7.333333 \ldots \end{array}\right\} \text { subtract }$	B3$\left.\begin{array}{rl} x & =0.6166666 \ldots \\ \frac{10 x}{} & =6.1666666 \ldots \end{array}\right\} \text { subtract }$	B4 $\left.\begin{array}{r}x=3.522222 . . . \\ 10 x=35.222222 \ldots\end{array}\right\}$ subtract
			$\begin{aligned} & 9 x=31.7 \\ & x=\frac{31.7}{9}=\frac{317}{90}=3 \frac{47}{90} \end{aligned}$
C1 $\left.\begin{array}{r} x=0.272727 \ldots \\ 100 x=27.272727 \ldots \end{array}\right\} \text { subtract }$	C2 $\left.\begin{array}{r}x=0.257575 \ldots \\ 100 x=25.757575 \ldots\end{array}\right\}$ subtract	$\left.\begin{array}{rl}x & =0.447447 \ldots \\ 1000 x & =447.447447 \ldots\end{array}\right\}$ subtract	$\left.\begin{array}{r}x=2.515151 . . . \\ 100 x=251.515151 \ldots\end{array}\right\}$ subtract
$\begin{aligned} 99 x & =27 \\ x & =\frac{27}{99}=\frac{3}{11} \end{aligned}$	$\begin{aligned} 99 x & =25.5 \\ x & =\frac{25.5}{99}=\frac{255}{990}=\frac{17}{66} \end{aligned}$	$\begin{aligned} 999 x & =447 \\ x & =\frac{447}{999}=\frac{149}{333} \end{aligned}$	$\begin{aligned} 99 x & =249 \\ x & =\frac{249}{99}=\frac{83}{33}=2 \frac{17}{33} \end{aligned}$
D1 $\left.\begin{array}{rl} x & =0.277777 \ldots \\ 10 x & =2.777777 \ldots \end{array}\right\} \text { subtract }$	D2 $\left.\begin{array}{r} 0.577777 \ldots \\ -0.262626 \ldots \end{array}\right\} \text { subtract }$	D3 $0 . \dot{x}=\frac{x}{9} \Rightarrow 0.0 \dot{x}=\frac{x}{90}$	--
$9 x=2.5$	0.31515151.	$\Rightarrow 0.1 \dot{x}=0.1+0.0 \dot{x}$	
$x=\frac{2.5}{9}=\frac{5}{18} \Rightarrow \frac{5}{18} \times 3=\frac{5}{6}$	$\begin{aligned} & \text { now convert } \\ & \text { to } a \text { fraction } \end{aligned} \longrightarrow \frac{312}{990}=\frac{52}{165}$	$=\frac{1}{10}+\frac{x}{90}=\frac{9+x}{90}$	

