Here are two similar triangles.

LM corresponds to *PQ*. *MN* corresponds to *QR*.

(a) Find the value of x.

$$x = \dots$$
 (2)

(b) Find the value of y.

 $y = \dots$

Here are three similar triangles.

Find the value of

(a) w,

$$w = \dots$$
 (1)

(b) *x*,

$$x =$$
 (2)

(c) y.

$$y =$$
 (2)

Here are two similar triangles.

AB corresponds to PQ.

BC corresponds to QR.

Find the value of

(a) *x*

$$x = \dots$$
 (1)

(b) *y*

$$y =$$
 (2)

(c) z

$$z = \dots$$
 (2)

Here are two supermarket price tickets.

The two supermarket price tickets are mathematically similar.

The area of the smaller ticket is 7 cm². Calculate the area of the larger ticket.

 $.....cm^2 \\$

Diagram **NOT** accurately drawn

Quadrilateral ${\bf P}$ is mathematically similar to quadrilateral ${\bf Q}$.

(a) Calculate the value of x.

$$x =$$
 (2)

(b) Calculate the value of y.

$$y =$$
 (2)

The area of quadrilateral \mathbf{P} is 60 cm^2 .

(c) Calculate the area of quadrilateral \mathbf{Q} .

Diagram **NOT** accurately drawn

The area of circle S is 4 cm².

The radius of circle **T** is 3 times the radius of circle **S**.

Work out the area of circle T.

		cm ²
7.		[3 marks]
	25 cm	

	23 CIII		
15 cm 10 cm		20 cm	Diagram NOT accurately drawn

Are the two rectangles mathematically similar? Tick (\checkmark) the appropriate box.

You must show working to justify your answer.

Yes	No		

Diagram **NOT** accurately drawn

The diagram shows triangle *ACD*.

B is a point on AC and E is a point on AD so that BE is parallel to CD.

 $AE = 4 \,\mathrm{cm}$

 $AC = 11.7 \, \text{cm}$

 $BE = 6 \,\mathrm{cm}$

 $CD = 13.5 \, \text{cm}$

(a) Calculate the length of AB.

	cm
(2)	

(b) Calculate the length of ED.

.....cm

Diagram **NOT** accurately drawn

BE is parallel to CD. AB = 4.5 cm, AE = 5 cm, ED = 3 cm, CD = 5.6 cm.

(a) Calculate the length of BE.

..... cm (2)

(b) Calculate the length of BC.

..... cm (2)

Diagram **NOT** accurately drawn

AB is	parallel	to DE
-------	----------	-------

ACE and BCD are straight lines.

AB = 9 cm.

AC = 7.2 cm.

CD = 5.2 cm.

DE = 6 cm.

(a) Calculate the length of BC.

..... cm (2)

(b) Calculate the length of CE.

(2)

ABCD and APQR are two similar quadrilaterals.

$$PQ = 9$$
 cm.

$$BC = 6$$
 cm.

$$AD = 5$$
 cm.

$$QR = 12 \text{ cm}.$$

Diagram **NOT** accurately drawn

(a) Find the length of DC.

 	cm
(2)	

(b) Find the length of AR.

The area of the quadrilateral ABCD is 32 cm².

(c) Calculate the area of the shaded region.

12. [7 marks

Triangle PQR is an enlargement, centre O, of triangle ABC.

OAP and OCR are straight lines.

OA = 3 cm.

AP = 12 cm.

OC = 3.5 cm.

PR = 19 cm.

(a) Work out the length of CR.

	cm
(2)	

(b) Work out the length of AC.

 	cm
(3)	

The area of triangle ABC is 2 cm²

(c) Work out the area of triangle PQR.

In the diagram *ABC* and *ADE* are straight lines. *BD* is parallel to *CE*.

$$AB = 9$$
 cm, $BC = 13.5$ cm, $AD = 10$ cm, $BD = 17$ cm

(a) Calculate the length of CE.

(2) cm

(b) Calculate the length of DE.

(2) cm

The area of triangle ABD is 36 cm²

(c) Calculate the area of quadrilateral *BDEC*.

(3) cm²

Triangle PQR is an enlargement, centre O, of triangle ABC.

OAP and OBQ are straight lines.

OA = 2 cm.

AP = 6 cm.

BQ = 7.2 cm.

 $A\tilde{C} = 3.7$ cm.

(a) Work out the length of *OB*.

..... cm (2)

(b) Work out the length of PR.

(3)

Rectangle ABCD is mathematically similar to rectangle DAEF.

$$AB = 10 \text{ cm}.$$

$$AD = 4$$
 cm.

Work out the area of rectangle DAEF.

..... cm²

The diagram shows two regular hexagons, OABCDE and OFGHIJ.

Diagram **NOT** accurately drawn

OAF and OEJ are straight lines. OF = 3 OA.

The area of *OABCDE* is 4 cm².

Calculate the area of the shaded region.

..... cm²

Diagram **NOT** accurately drawn

AB is parallel to DE.

The lines AE and BD intersect at C.

AB = 7.5 cm, AC = 7 cm, CD = 5.2 cm, CE = 5.6 cm.

(a) Calculate the length of BC.

	cm
(2)	

(b) Calculate the length of *DE*.

(c) The area of triangle *ABC* is 21 cm² Calculate the area of triangle *EDC*.

