SURDS

EXAM-TYPE QUESTIONS
NO CALCULATOR

A1 Express $\sqrt{48}$ in the form $a \sqrt{b}$ where b is a prime number.	A2 Express $4 \sqrt{5}$ in the form \sqrt{a} where a is an integer.	A3 Express $\sqrt{175}-\sqrt{63}$ in the form $a \sqrt{7}$ where a is an integer.	A4 Express $\sqrt{75}+\sqrt{27}$ in the form $a \sqrt{b}$ where a and b are integers
B1 Expand $(3+\sqrt{5})(2+\sqrt{5})$ Give your answer in the form $a+b \sqrt{5}$ where a and b are integers	B2 Expand $(2+3 \sqrt{7})^{2}$ Give your answer in the form $a+b \sqrt{7}$ where a and b are integers	B3 Show that $(4+2 \sqrt{3})(5-\sqrt{3})=14+6 \sqrt{3}$ Show clear working out.	B4 Show that $(2+\sqrt{8})(9-3 \sqrt{2})=6+12 \sqrt{2}$ Show clear working out.
C1 Show that $\frac{12}{\sqrt{45}}=\frac{4 \sqrt{5}}{5}$ Show clear working out.	C2 Rationalise the denominator and simplify fully $\frac{9+2 \sqrt{3}}{\sqrt{3}}$	C3 Simplify $\frac{2+\sqrt{20}}{\sqrt{5}-1}$ giving your answer in the form $a+b \sqrt{5}$	C4 A rectangle has an area of $\sqrt{80} \mathrm{~cm}^{2}$ and a width of $1+\sqrt{5} \mathrm{~cm}$. Calculate the exact height of the rectangle, leaving your answer as a simplified surd.
D1 Given that $(a+\sqrt{b})^{2}=49+12 \sqrt{b}$ Find the value of a and the value of b.	D2 Given that $(1+\sqrt{e})(3+\sqrt{e})=f+4 \sqrt{5}$ Find the value of e and the value of f.	D3 Given that $(5+3 \sqrt{2})^{2}=p+\frac{q}{\sqrt{8}}$ Find the value of p and the value of q.	D4 Given that $(\sqrt{x}+\sqrt{8 x})^{2}=54+y \sqrt{2}$ Find the value of x and the value of y.

Maths4 4 Everyone.com

SURDS

EXAM-TYPE QUESTIONS

NO CALCULATOR

A1 Express $\sqrt{48}$ in the form $a \sqrt{b}$ where b is a prime number. $\begin{aligned} \sqrt{48} & =\sqrt{16} \times \sqrt{3} \\ & =4 \sqrt{3} \end{aligned}$	A2 Express $4 \sqrt{5}$ in the form \sqrt{a} where a is an integer. $\begin{aligned} 4 \sqrt{5} & =\sqrt{16} \times \sqrt{5} \\ & =\sqrt{80} \end{aligned}$	A3 Express $\sqrt{175}-\sqrt{63}$ in the form $a \sqrt{7}$ where a is an integer. $\begin{aligned} \sqrt{175}-\sqrt{63} & =5 \sqrt{7}-3 \sqrt{7} \\ & =2 \sqrt{7} \end{aligned}$	A4 Express $\sqrt{75}+\sqrt{27}$ in the form $a \sqrt{b}$ where a and b are integers $\begin{aligned} \sqrt{75}+\sqrt{27} & =5 \sqrt{3}+3 \sqrt{3} \\ & =8 \sqrt{3} \end{aligned}$
B1 $\begin{aligned} \operatorname{Expand}(3+ & \sqrt{5})(2+\sqrt{5}) \\ & =6+3 \sqrt{5}+2 \sqrt{5}+5 \\ & =11+5 \sqrt{5} \end{aligned}$	B2 Expand $\begin{aligned} & (2+3 \sqrt{7})^{2} \\ & =4+6 \sqrt{7}+6 \sqrt{7}+9 \times 7 \\ & =67+12 \sqrt{7} \end{aligned}$	B3 $\begin{aligned} (4+2 \sqrt{3}) & (5-\sqrt{3}) \\ = & 20-4 \sqrt{3}+10 \sqrt{3}-2 \times 3 \\ = & 14+6 \sqrt{3} \end{aligned}$	B4 $\begin{aligned} & (2+\sqrt{8})(9-3 \sqrt{2}) \\ & =18-6 \sqrt{2}+9 \sqrt{8}-3 \times \sqrt{16} \\ & =18-6 \sqrt{2}+18 \sqrt{2}-3 \times 4 \\ & =6+12 \sqrt{2} \end{aligned}$
$\begin{aligned} \frac{12}{\sqrt{45}} \times \frac{\sqrt{45}}{\sqrt{45}} & =\frac{12 \sqrt{45}}{45} \\ & =\frac{12 \times 3 \sqrt{5}}{45} \\ & =\frac{4 \sqrt{5}}{5} \end{aligned}$	$\begin{aligned} \frac{9+2 \sqrt{3}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} & =\frac{9 \sqrt{3}+2 \times 3}{3} \\ & =3 \sqrt{3}+2 \\ & (=2+3 \sqrt{3}) \end{aligned}$	$\begin{aligned} \frac{2+\sqrt{20}}{\sqrt{5}-1} \times \frac{\sqrt{5}+1}{\sqrt{5}+1} & =\frac{2 \sqrt{5}+2+\sqrt{100}+\sqrt{20}}{5-1} \\ & =\frac{2 \sqrt{5}+2+10+2 \sqrt{5}}{4} \\ & =\frac{12+4 \sqrt{5}}{4}=3+\sqrt{5} \end{aligned}$	$\text { height } \begin{aligned} \frac{\sqrt{80}}{1+\sqrt{5}} & =\frac{\sqrt{80}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}} \\ & =\frac{\sqrt{80}-\sqrt{400}}{1-5} \\ & =\frac{4 \sqrt{5}-20}{-4}=5-\sqrt{5} \end{aligned}$
	$\begin{aligned} (1+\sqrt{e})(3+\sqrt{e})= & 3+4 \sqrt{e}+e \\ & =3+e+4 \sqrt{e} \\ \text { If } \quad 3+e+4 \sqrt{e}= & f+4 \sqrt{5} \\ 4 \sqrt{e}=4 \sqrt{5} \quad & f=3+e \\ e=5 \quad & =8 \end{aligned}$	$\begin{aligned} (5+3 \sqrt{2})^{2} & =25+30 \sqrt{2}+18 \\ & =43+30 \sqrt{2} \\ \text { If } \quad 43+30 \sqrt{2} & =p+\frac{q}{\sqrt{8}} \\ p=43 \quad \frac{q}{\sqrt{8}} & =30 \sqrt{2} \\ q & =30 \times \sqrt{16}=120 \end{aligned}$	$\begin{aligned} (\sqrt{x}+\sqrt{8 x})^{2}= & x+2 x \sqrt{8}+8 x \\ = & 9 x+2 x \sqrt{8} \\ \text { If } \quad 9 x+2 x \sqrt{8}= & 54+y \sqrt{2} \\ 9 x=54 \quad y \sqrt{2} & =2 x \sqrt{8} \\ x=6 \quad y & =\frac{2 \times 6 \sqrt{8}}{\sqrt{2}}=24 \end{aligned}$

