

SURDS EXAM-TYPE QUESTIONS

NO CALCULATOR

Ref: G188. 1R1

A1 Express $\sqrt{48}$ in the form $a\sqrt{b}$ where b is a prime number.	A2 Express $4\sqrt{5}$ in the form \sqrt{a} where a is an integer.	A3 Express $\sqrt{175} - \sqrt{63}$ in the form $a\sqrt{7}$ where a is an integer.	A4 Express $\sqrt{75} + \sqrt{27}$ in the form $a\sqrt{b}$ where a and b are integers
B1 Expand $(3+\sqrt{5})(2+\sqrt{5})$ Give your answer in the form $a+b\sqrt{5}$ where a and b are integers	B2 Expand $(2+3\sqrt{7})^2$ Give your answer in the form $a+b\sqrt{7}$ where a and b are integers	B3 Show that $(4+2\sqrt{3})(5-\sqrt{3}) = 14+6\sqrt{3}$ Show clear working out.	B4 Show that $(2+\sqrt{8})(9-3\sqrt{2}) = 6+12\sqrt{2}$ Show clear working out.
Show that $ \frac{12}{\sqrt{45}} = \frac{4\sqrt{5}}{5} $ Show clear working out.	C2 Rationalise the denominator and simplify fully $\frac{9+2\sqrt{3}}{\sqrt{3}}$	Simplify $\frac{2+\sqrt{20}}{\sqrt{5}-1}$ giving your answer in the form $a+b\sqrt{5}$	C4 A rectangle has an area of $\sqrt{80}$ cm ² and a width of $1+\sqrt{5}$ cm. Calculate the exact height of the rectangle, leaving your answer as a simplified surd.
D1 Given that $(a+\sqrt{b})^2 = 49 + 12\sqrt{b}$ Find the value of a and the value of b .	D2 Given that $(1+\sqrt{e})(3+\sqrt{e}) = f + 4\sqrt{5}$ Find the value of <i>e</i> and the value of <i>f</i> .	D3 Given that $(5+3\sqrt{2})^2 = p + \frac{q}{\sqrt{8}}$ Find the value of p and the value of q .	D4 Given that $(\sqrt{x} + \sqrt{8x})^2 = 54 + y\sqrt{2}$ Find the value of x and the value of y.

SURDS

EXAM-TYPE QUESTIONS

NO CALCULATOR

Ref: G188. 1R1

A1

Express $\sqrt{48}$ in the form $a\sqrt{b}$ where b is a prime number.

$$\sqrt{48} = \sqrt{16} \times \sqrt{3}$$
$$= 4\sqrt{3}$$

A2

Express $4\sqrt{5}$ in the form \sqrt{a} where a is an integer.

$$4\sqrt{5} = \sqrt{16} \times \sqrt{5}$$
$$= \sqrt{80}$$

A3

Express $\sqrt{175} - \sqrt{63}$ in the form $a\sqrt{7}$ where a is an integer.

$$\sqrt{175} - \sqrt{63} = 5\sqrt{7} - 3\sqrt{7}$$
$$= 2\sqrt{7}$$

Express $\sqrt{75} + \sqrt{27}$ in the form $a\sqrt{b}$ where a and b are integers

$$\sqrt{75} + \sqrt{27} = 5\sqrt{3} + 3\sqrt{3} = 8\sqrt{3}$$

R1

Expand $(3+\sqrt{5})(2+\sqrt{5})$

$$= 6 + 3\sqrt{5} + 2\sqrt{5} + 5$$
$$= 11 + 5\sqrt{5}$$

Expand $(2 + 3\sqrt{7})^2$

$$= 4 + 6\sqrt{7} + 6\sqrt{7} + 9 \times 7$$
$$= 67 + 12\sqrt{7}$$

$$(4 + 2\sqrt{3})(5 - \sqrt{3})$$
$$= 20 - 4\sqrt{3} + 10\sqrt{3} - 2$$

$$= 20 - 4\sqrt{3} + 10\sqrt{3} - 2 \times 3$$
$$= 14 + 6\sqrt{3}$$

$$(2+\sqrt{8})(9-3\sqrt{2})$$

$$= 18-6\sqrt{2}+9\sqrt{8}-3\times\sqrt{16}$$

$$= 18-6\sqrt{2}+18\sqrt{2}-3\times4$$

$$= 6+12\sqrt{2}$$

$$\frac{12}{\sqrt{45}} \times \frac{\sqrt{45}}{\sqrt{45}} = \frac{12\sqrt{45}}{45}$$

$$= \frac{12 \times 3\sqrt{5}}{45}$$

$$= \frac{4\sqrt{5}}{5}$$

$$\frac{9+2\sqrt{3}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{9\sqrt{3}+2\times3}{3}$$
$$= 3\sqrt{3}+2$$
$$(=2+3\sqrt{3})$$

$$\frac{2+\sqrt{20}}{\sqrt{5}-1} \times \frac{\sqrt{5}+1}{\sqrt{5}+1} = \frac{2\sqrt{5}+2+\sqrt{100}+\sqrt{20}}{5-1}$$
$$= \frac{2\sqrt{5}+2+10+2\sqrt{5}}{4}$$
$$= \frac{12+4\sqrt{5}}{4} = 3+\sqrt{5}$$

height =
$$\frac{\sqrt{80}}{1+\sqrt{5}} = \frac{\sqrt{80}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}$$

= $\frac{\sqrt{80}-\sqrt{400}}{1-5}$
= $\frac{4\sqrt{5}-20}{-4} = 5-\sqrt{5}$

$$(a + \sqrt{b})^2 = a^2 + 2a\sqrt{b} + b$$

= $a^2 + b + 2a\sqrt{b}$

If
$$a^2 + b + 2a\sqrt{b} = 49 + 12\sqrt{b}$$

$$2a\sqrt{b} = 12\sqrt{b}$$
 $a^2 + b = 49$
 $a = 6$ $b = 13$

$$(1+\sqrt{e})(3+\sqrt{e}) = 3+4\sqrt{e}+e$$

= $3+e+4\sqrt{e}$

If
$$3 + e + 4\sqrt{e} = f + 4\sqrt{5}$$

$$4\sqrt{e} = 4\sqrt{5}$$

$$f = 3 + e$$

$$e = 5$$

$$= 8$$

$$(5+3\sqrt{2})^2 = 25+30\sqrt{2}+18$$
$$= 43+30\sqrt{2}$$

If
$$43 + 30\sqrt{2} = p + \frac{q}{\sqrt{8}}$$

$$p = 43$$
 $\frac{q}{\sqrt{8}} = 30\sqrt{2}$ $q = 30 \times \sqrt{16} = 120$

$$(\sqrt{x} + \sqrt{8x})^2 = x + 2x\sqrt{8} + 8x$$
$$= 9x + 2x\sqrt{8}$$

If
$$9x + 2x\sqrt{8} = 54 + y\sqrt{2}$$

$$9x = 54$$

$$y\sqrt{2} = 2x\sqrt{8}$$

$$y = \frac{2 \times 6\sqrt{8}}{\sqrt{2}} = 24$$