[ESTIMATED TIME: 75 minutes]

1.

Express $\sqrt{98}$ in the form $a\sqrt{b}$ where *a* and *b* are integers and a > 1.

2.

3.

[3 marks]

[2 marks]

Express $\sqrt{48} + \sqrt{108}$ in the form $k\sqrt{6}$ where k is a surd.

[2 marks]

Show that $\sqrt{27} + \sqrt{147}$ can be expressed in the form $a\sqrt{b}$, where *a* and *b* are integers.

(2)

Simplify $(7 + 2\sqrt{50})(5 - 2\sqrt{2})$

Give your answer in the form $a + b\sqrt{18}$ where *a* and *b* are integers. Show your working clearly.

[3 marks]

Show that $(6 - \sqrt{8})^2 = 44 - 24\sqrt{2}$

Show each stage of your working clearly.

[3 marks

(a) Show that $\sqrt{48} + \sqrt{108}$ can be expressed in the form $a\sqrt{b}$, where a and b are integers.

(b) Show that $(5 - \sqrt{12})(6 - \sqrt{3}) = 36 - 17\sqrt{3}$ Show each stage of your working.

(2)

(2)

7.

Show that $\frac{\sqrt{3} + \sqrt{27}}{\sqrt{2}}$ can be expressed in the form \sqrt{k} where *k* is an integer. State the value of *k*.

k =

(a) Show that $(3 + 2\sqrt{2})(4 - \sqrt{2}) = 8 + 5\sqrt{2}$

Show your working clearly.

(2)

(b) Rationalise the denominator and simplify fully $\frac{10 + 3\sqrt{2}}{\sqrt{2}}$ Show your working clearly.

(2)

[2 marks]

Show that

 $\frac{12}{\sqrt{8}} = 3\sqrt{2}$

9.

(a) Expand $(5 + 3\sqrt{2})^2$

Give your answer in the form $(a + b\sqrt{2})$, where a and b are integers. Show your working clearly.

(b) $(5 + 3\sqrt{2})^2 = p + \frac{q}{\sqrt{8}}$, where p and q are integers. Find the value of q.

q = _____(3)

(2)

Given that $(5 - \sqrt{x})^2 = y - 20\sqrt{2}$ where x and y are positive integers, find the value of x and the value of y.

x = y = [3 marks]

 $(3+\sqrt{a})(4+\sqrt{a}) = 17 + k\sqrt{a}$ where a and k are positive integers.

Find the value of *a* and the value of *k*.

а	=	

k =.....

12.

A trapezium *ABCD* has an area of $5\sqrt{6}$ cm².

AB = 4 cm. $BC = \sqrt{3}$ cm. DC = k cm.

Calculate the value of k, giving your answer in the form $a\sqrt{b} - c$ where a, b and c are positive integers. Show each step in your working.

k =.....

(a) Show that $(5 - \sqrt{8})(7 + \sqrt{2}) = 31 - 9\sqrt{2}$ Show each stage of your working.

(3)

Given that *c* is a prime number,

(b) rationalise the denominator of $\frac{3c - \sqrt{c}}{\sqrt{c}}$

Simplify your answer.

$$\left(\sqrt{a} + \sqrt{8a}\right)^2 = 54 + b\sqrt{2}$$

a and b are positive integers. Find the value of *a* and the value of *b*. Show your working clearly.

 $(a + \sqrt{b})^2 = 49 + 12\sqrt{b}$ where *a* and *b* are integers, and *b* is prime.

Find the value of *a* and the value of *b*

b =

3 marks

17. Simplify fully $\frac{(6-\sqrt{5})(6+\sqrt{5})}{\sqrt{31}}$ You must show your working.

Express $\frac{\sqrt{18} + 10}{\sqrt{18 + 10}}$ in the form $p + q\sqrt{2}$, where p and q are integers. Show clear working out.

.....

(3)

19. [4 marks] Rationalise the denominator and simplify fully $\frac{33}{4+\sqrt{5}}$ [4 marks]

Show clear working out.

(4)

[4 marks]

Express $\frac{39}{4-\sqrt{3}}$ in the form $a+b\sqrt{3}$, where *a* and *b* are integers Show clear working out. $a+b\sqrt{3}$

.....

(4)

21.

 $a + h\sqrt{5}$

Simplify $\frac{7-\sqrt{5}}{2+\sqrt{5}}$, giving your answer in the form $a+b\sqrt{5}$, where *a* and *b* are integers. Show clear working out.

.....

(4)

Show that $\frac{3}{\sqrt{27} - \sqrt{18}}$ can be written in the form $\sqrt{m} + \sqrt{n}$, where *m* and *n* are integers. $\frac{3}{\sqrt{27} - \sqrt{18}}$ $\sqrt{m} + \sqrt{n}$

.....

(4)

3. [4 marks] $\overline{-\sqrt{8}} = 6\sqrt{2}$ Show that $\frac{16}{\sqrt{2}} - \sqrt{8} = 6\sqrt{2}$

22.

23.