Express $\sqrt{98}$ in the form $a \sqrt{ } b$ where a and b are integers and $a>1$.
2.

Express $\sqrt{48}+\sqrt{108}$ in the form $k \sqrt{6}$ where k is a surd.

$$
3 .
$$

Show that $\sqrt{27}+\sqrt{147}$ can be expressed in the form $a \sqrt{b}$, where a and b are integers.

Simplify $(7+2 \sqrt{50})(5-2 \sqrt{2})$
Give your answer in the form $a+b \sqrt{18}$ where a and b are integers. Show your working clearly.
5.

Show that $(6-\sqrt{8})^{2}=44-24 \sqrt{2}$
Show each stage of your working clearly.
(a) Show that $\sqrt{48}+\sqrt{108}$ can be expressed in the form $a \sqrt{b}$, where a and b are integers.
\qquad
(b) Show that $(5-\sqrt{12})(6-\sqrt{3})=36-17 \sqrt{3}$ Show each stage of your working.
\qquad

Show that $\frac{\sqrt{3}+\sqrt{27}}{\sqrt{2}}$ can be expressed in the form \sqrt{k} where k is an integer.
State the value of k.

$$
k=
$$

(a) Show that $(3+2 \sqrt{2})(4-\sqrt{2})=8+5 \sqrt{2}$

Show your working clearly.
(b) Rationalise the denominator and simplify fully $\frac{10+3 \sqrt{2}}{\sqrt{2}}$

Show your working clearly.

Show that $\frac{12}{\sqrt{8}}=3 \sqrt{2}$
(a) Expand $(5+3 \sqrt{2})^{2}$

Give your answer in the form $(a+b \sqrt{2})$, where a and b are integers. Show your working clearly.
(b) $(5+3 \sqrt{2})^{2}=p+\frac{q}{\sqrt{8}}$, where p and q are integers.

Find the value of q.

Given that $(5-\sqrt{x})^{2}=y-20 \sqrt{2}$ where x and y are positive integers, find the value of x and the value of y.

$$
\begin{aligned}
& x=. \\
& y=.
\end{aligned}
$$

$(3+\sqrt{a})(4+\sqrt{a})=17+k \sqrt{a}$ where a and k are positive integers.
Find the value of a and the value of k.

$$
\begin{aligned}
& a= \\
& k=
\end{aligned}
$$

A trapezium $A B C D$ has an area of $5 \sqrt{6} \mathrm{~cm}^{2}$.

Diagram NOT
accurately drawn
$A B=4 \mathrm{~cm}$.
$B C=\sqrt{3} \mathrm{~cm}$.
$D C=k \mathrm{~cm}$.
Calculate the value of k, giving your answer in the form $a \sqrt{b}-c$ where a, b and c are positive integers.
Show each step in your working.

$$
k=
$$

(a) Show that $(5-\sqrt{8})(7+\sqrt{2})=31-9 \sqrt{2}$

Show each stage of your working.

Given that c is a prime number,
(b) rationalise the denominator of $\frac{3 c-\sqrt{c}}{\sqrt{c}}$

Simplify your answer.
$(\sqrt{a}+\sqrt{8 a})^{2}=54+b \sqrt{2}$
a and b are positive integers.
Find the value of a and the value of b.
Show your working clearly.

$$
\begin{aligned}
& a=. \\
& b=.
\end{aligned}
$$

$(a+\sqrt{b})^{2}=49+12 \sqrt{b} \quad$ where a and b are integers, and b is prime.
Find the value of a and the value of b

$$
\begin{aligned}
& a= \\
& b=
\end{aligned}
$$

Simplify fully $\frac{(6-\sqrt{5})(6+\sqrt{5})}{\sqrt{31}}$
You must show your working.

Express $\frac{\sqrt{18}+10}{\sqrt{2}}$ in the form $p+q \sqrt{2}$, where p and q are integers.
Show clear working out.
19.

Rationalise the denominator and simplify fully $\frac{33}{4+\sqrt{5}}$
Show clear working out.

Express $\frac{39}{4-\sqrt{3}}$ in the form $a+b \sqrt{3}$, where a and b are integers
Show clear working out.
(4)

Simplify $\frac{7-\sqrt{5}}{2+\sqrt{5}}$, giving your answer in the form $a+b \sqrt{5}$, where a and b are integers.
Show clear working out.

Show that $\frac{3}{\sqrt{27}-\sqrt{18}}$ can be written in the form $\sqrt{m}+\sqrt{n}$, where m and n are integers.

Show that $\frac{16}{\sqrt{2}}-\sqrt{8}=6 \sqrt{2}$

