Maths4 Everyone.com

WORKBOOK

TRANSFORMATIONS

A transformation is a change in the size, location or orientation of an object/shape.

There are **four** types of transformation to consider at GCSE:

TRANSLATION

Described by:

the vector

Vector is $\begin{pmatrix} 7 \\ 1 \end{pmatrix}$

REFLECTION

Described by:

the mirror line

Mirror line is x = 6

ROTATION

Described by:

the angle and the centre

90° clockwise Centre at (6, 1)

ENLARGEMENT

Described by:

the scale factor and the centre

Scale factor = 2Centre at (1, 2)

**Note that the 'new' shape, which is the result of the transformation, is called the 'image'.

TRANSLATION

A translation is a 'shift' from one location to another.

A translation is described by a vector.

The following table shows some of the translations from the grid above:

Mapping	Description	
T to A	Translation, by vector	$\begin{pmatrix} 4 \\ 2 \end{pmatrix}$
T to B	Translation, by vector	$\begin{pmatrix} 0 \\ 6 \end{pmatrix}$
T to C	Translation, by vector	$\begin{pmatrix} -6 \\ 6 \end{pmatrix}$
T to D	Translation, by vector	$\begin{pmatrix} -9 \\ -1 \end{pmatrix}$
D to T	Translation, by vector	$\begin{pmatrix} 9 \\ 1 \end{pmatrix}$

The diagram shows several translations of triangle T:

1. Complete the table to describe the translations:

Mapping	Vector
T onto E	$\begin{pmatrix} 3\\2 \end{pmatrix}$
T onto F	(-6)
T onto G	$\begin{pmatrix} -7 \\ 0 \end{pmatrix}$
T onto H	(- 7)

- (a) Translate triangle **T** by the vector Label the new triangle **P**
- $\begin{bmatrix} 3 \\ -4 \end{bmatrix}$
- (b) Translate triangle **T** by the vector Label the new triangle **Q**
- $\begin{pmatrix} -6 \\ 3 \end{pmatrix}$
- (c) Translate triangle **T** by the vector Label the new triangle **R**

REFLECTION

Reflection is when a shape is 'flipped' to the other side of a mirror line.

Reflections are described by stating the equation of the mirror line.

Note that in GCSE the mirror line may vertical, horizontal or at a 45° slope:

Type of mirror line	Type of reflection		Format of equation
Vertical line	Shape flips back-to-front		<i>x</i> =
Horizontal line	Shape flips upside-down		<i>y</i> =
Diagonal line – almost certainly a 45° line	Difficult to describe – sometimes looks a bit like a rotation, but it's not!		y = x

REFLECTIONS IN HORIZONTAL AND VERTICAL LINES

The following table shows reflections from the grid on the previous page:

Mapping	Mirror line	
T to A	y=7	
T to B	x = 7	
T to C	x = 1	
T to D	y = 3	

[DRAW THE MIRROR LINES ON THE GRID]

REFLECTIONS IN THE AXES AND IN THE LINE Y = X.

The following table shows reflections from the grid above:

Mapping	Description
T to L	Reflection, in line $x = 0$ (aka 'the y-axis')
T to M	Reflection, in line $y = 0$ (aka 'the x-axis')
T to N	Reflection, in line $y = x$

LORAW THESE MIRKOR LINES ONTO THE GRID]

Look at the diagram:

1. Complete the table to describe the reflections:

Mapping	Mirror line
T onto A	y=6
T onto B	x=-1
T onto C	y=x
T onto D	x=7

- (a) Reflect trapezium **A** in the line x = 7 Label the new trapezium **E**.
- (b) Reflect trapezium **B** in the line x = -4 Label the new trapezium **F**.
- (c) Reflect trapezium **B** in the line y = 4 Label the new trapezium **G**.
- (d) Reflect trapezium **A** in the *y*-axis Label the new trapezium **H**.

ROTATION

A rotation is when a shape is turned around a point.

Rotations are described by the angle turned,

the direction of turn and

the point/coordinates at which the rotation is centred)

JESTHINGS,

Examples:

The images below have been created by rotating triangle T around the point (9, 8)

Mapping	Description
T to P	Rotation, 90° anti-clockwise
T to Q	Rotation, 90° clockwise
T to R	Rotation, 180° LEITHER

DIRECTION!]

USE TRACING PAPER TO HELP YOU WORK OUT ROTATIONS

More examples:

The transformations above can be described in the following ways:

Mapping	Description	
T to U	Rotation, 90° clockwise, centre (5, 6)	
T to V	Rotation, 180°, centre (5, 6) \ EITHER	
T to W	Rotation, 180°, centre (-2, 7) DIRECTION	
T to X	Rotation, 90° clockwise, centre (-2, 7)	

Look at the diagram:

1. Complete the table to describe the rotations:

Mapping	Angle	Direction	Centre
T onto A	180°	NA	(4,5)
T onto B	90°	ANTI-CLOCKIVISE	(5,5)
T onto C	1800	NIA	(-1,6)
T onto D	1800	NA	(-4,3
T onto E	900	CLOCKWISE	(1,7)

- (a) Rotate trapezium C 90° anti-clockwise about the point (-6, 6). Label the new trapezium P.
- (b) Rotate trapezium **B** 90° clockwise about the point (10, 3) Label the new trapezium **Q**.
- (c) Rotate trapezium C 180° about the point (-5, 6) Label the new trapezium R
- (d) Rotate trapezium **T** 90° clockwise about the point (5, 6) Label the new trapezium **S**.

ENLARGEMENT

An enlargement is a change in size of a shape.

Although we usually think of an enlargement as making a shape bigger, an enlargement could be a <u>fractional change</u> that makes the shape smaller!

An enlargement is described by its <u>scale factor</u> and the <u>point</u> from which the shape enlarges (known as the <u>centre</u>)

Example 1:

When a shape is enlarged, the original and the enlargement are said to be 'similar':

- the angles stay the same;
- the sides all increase by the scale factor;
- the distance of each of the vertices from the centre increases by the scale factor.

The transformations in the grid above can be described in the following ways:

I	Mapping	Description	
	T to Y	Enlargement, scale factor 2, centre (0, 0)	
	T to Z	Enlargement, scale factor 3, centre (0, 0)	

Example 2:

The transformations in the grid above can be described in the following ways:

Mapping	Description	
T to A	Enlargement, scale factor 2, centre (17, 2)	
T to B	Enlargement, scale factor 3, centre (9, 3)	

Look at the diagram:

1. Complete the table to describe the enlargements:

Mapping	Scale factor	Centre
T onto A	3	(19,10)
T onto B	2	(9,12)
T onto C	0=5	(13,16)

- (a) Enlarge shape **T** with scale factor 2 and centre (16, 13). Label the new shape **X**.
- (b) Enlarge shape **T** with scale factor $\frac{1}{2}$ and centre (7, 12). Label the new shape **Y**.

MIXED TRANSFORMATIONS

DESCRIBING TRANSFORMATIONS

SAMPLE QUESTIONS 1

1. The diagram shows some shapes on a coordinate grid:

Describe fully each of the following transformations (remember to state the type of transformation):

2. The diagram shows some triangles on a coordinate grid:

Describe fully each of the following transformations:

(e) **X** to **T**

DRAWING TRANSFORMATIONS

SAMPLE QUESTIONS 2

1. Below is a coordinate grid showing a triangle:

On the grid:

(a) Reflect triangle S in the line y = 4Label the new triangle A

(b) Reflect triangle S in the line x = 6Label the new triangle B

(c) Rotate triangle S 90° clockwise around the point (14, 6) Label the new triangle C

(d) Translate triangle S by the vector Label the new triangle D

(e) Reflect triangle S in the line y = xLabel the new triangle E

(f) Enlarge triangle S with scale factor 2 and centre (6, 4)
Label the new triangle F

2. Below is a coordinate grid showing a quadrilateral:

- (a) Reflect quadrilateral **Q** in the line y = x Label the new triangle **R**
- (b) Reflect quadrilateral **Q** in the line y = 10 Label the new triangle **S**
- (c) Enlarge quadrilateral **Q** with scale factor 3 and centre (0, 6) Label the new triangle **T**
- (d) Translate quadrilateral **Q** by the vector Label the new triangle **U**
- (e) Rotate quadrilateral Q 90° anticlockwise around the point (13, 12) Label the new triangle V
- (f) Reflect quadrilateral **Q** in the line x = 12 Label the new triangle **W**

- (a) On the grid, enlarge triangle **P** with a scale factor 3 and centre (3, 4) Label the new triangle **Q**.
- (b) On the grid, translate changle Q by the vector $\begin{bmatrix} 4 \\ -8 \end{bmatrix}$
- (c) Describe fully the single transformation that maps triangle P onto triangle R.

(d) On the grid, reflect triangle \mathbf{Q} in the line x = 9Label the new triangle \mathbf{S} .

- (a) On the grid, reflect triangle **P** in the line y = 11 Label the new triangle **Q**.
- (b) On the grid, reflect triangle \mathbf{P} in the line y = x Label the new triangle \mathbf{R} .
- (c) On the grid rotate triangle Q through 90° clockwise about the point (8, 12). Label the new triangle S.
- (d) Describe fully the single transformation that maps triangle R onto triangle S.

ROTATION, 180°, CENTRE IS (9,10)

(a) Describe fully the single transformation, which maps triangle \vec{P} onto triangle \vec{Q} .

- (b) On the grid, translate triangle \mathbf{Q} by the vector Label the new triangle \mathbf{R} .
- (c) Describe fully the single transformation, which maps triangle \vec{P} onto triangle \vec{R} .

- (d) On the grid, enlarge triangle \mathbf{P} with scale factor 2 and centre (1, -5). Label the new triangle \mathbf{S} .
- (e) On the grid rotate triangle Q through 180° about the point (2, 1). Label the new triangle T.

(a) Describe fully the single transformation that maps triangle P onto triangle Q.

REFLECTION, MIRROR LINE IS Y=X

(b) Describe fully the single transformation that maps triangle P onto triangle R.

ENLARGEMENT, SCALE FACTOR Z CENTRE (0,3)

- (c) On the grid, reflect triangle **R** in the y-axis. Label the new triangle **S**.
- On the grid, rotate triangle P 90° anti-clockwise about the point (-1, 3). Label the new shape T.
- 7. A shape, **P**, is enlarged by scale factor 3 to give shape **Q**. Which of the following statements are true?

	True	False
The angles in P and Q are the same.	☑	
The lengths in P and Q are the same.		Y
Shapes P and Q are congruent.		V
Shapes P and Q are similar.	☑′	