(+ IGCSE) EXAM QUESTION PRACTICE

1. [5 marks]

$$\mathbf{a} = \begin{pmatrix} 5 \\ -2 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 1 \\ 7 \end{pmatrix} \qquad \mathbf{c} = \begin{pmatrix} -7 \\ 0 \end{pmatrix}$$

(a) Write, as a column vector, 2a

(b) Write, as a column vector, $3\mathbf{b} - \mathbf{c}$

(c) Work out the magnitude of **a** Give your answer as a surd.

2. [2 marks]

ABCD!is a parallelogram.

$$\overrightarrow{BC} = \begin{pmatrix} 5 \\ -1 \end{pmatrix} \qquad \overrightarrow{DC} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

Find \overrightarrow{BD} as a column vector.

Diagram **NOT** accurately drawn

A is the point with coordinates (2, 3).

$$\overrightarrow{AB} = \begin{pmatrix} 5 \\ -4 \end{pmatrix}.$$

Find the coordinates of B.

(.....)

4. [4 marks]

The diagram shows a trapezium ABCD.

$$\overrightarrow{BC} = 2\overrightarrow{AD}$$
.
 $\overrightarrow{AB} = \mathbf{x}$. $\overrightarrow{AD} = \mathbf{y}$.

- (a) Find, in terms of x and y,
 - (i) \overrightarrow{AC}

.....

(ii) \overrightarrow{DC}

(2)

(b) The point E is such that $\overrightarrow{AE} = \mathbf{x} + \mathbf{y}$. Use your answer to part (a)(ii) to explain why AECD is a parallelogram.

PQRS and PSTU are parallelograms.

$$\overrightarrow{PU} = \mathbf{a} \quad \overrightarrow{PS} = \mathbf{b} \quad \overrightarrow{PQ} = \mathbf{c}$$

Find, in terms of a, b and c

(i)
$$\overrightarrow{TQ}$$

.....

(ii) \overrightarrow{PX} where *X* is the midpoint of *TQ*.

Simplify your answer as much as possible.

[3 marks] 6.

Diagram NOT accurately drawn

OABC is a parallelogram.

$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OC} = \mathbf{c}$

P is the point on AB such that $AP = \frac{1}{4}AB$.

Q is the point on OC such that $OQ = \frac{2}{3}OC$.

Find, in terms of **a** and **c**, \overrightarrow{PQ} . Give your answer in its simplest form.

PQRSTU is a regular hexagon, centre O.

The hexagon is made from six equilateral triangles of side 2.5 cm.

 $\overrightarrow{TU} = \mathbf{a}. \overrightarrow{UP} = \mathbf{b}.$

- (a) Find, in terms of a and/or b, the vectors
 - (i) \overrightarrow{TP}

(1)

(ii) \overrightarrow{PO}

.....(1)

(iii) \overrightarrow{UO}

(1)

(b) Find the modulus (magnitude) of \overrightarrow{UR} .

..... cm (1)

8.

[4 marks]

Diagram **NOT** accurately drawn

In triangle \overrightarrow{OPQ} , $\overrightarrow{OP} = 6\mathbf{a}$ and $\overrightarrow{OQ} = 6\mathbf{b}$

X is the midpoint of PQ.

(a) Find, in terms of **a** and **b**, the vector \overrightarrow{OX} Give your answer in its simplest form.

(2)

Y is the point on OX such that OY: YX = 2:1

(b) Find, in terms of **a** and **b**, the vector \overrightarrow{QY} Give your answer in its simplest form.

(2)

PQR is a triangle.

The midpoint of PQ is W.

X is the point on QR such that QX: XR = 2:1

PRY is a straight line.

$$\overrightarrow{PW} = \mathbf{a} \ \overrightarrow{PR} = \mathbf{b}$$

- (a) Find, in terms of a and b,
 - (i) \overrightarrow{QR}
 - (ii) \overrightarrow{QX}
 - (iii) \overrightarrow{WX}
- *R* is the midpoint of the straight line *PRY*.
- (b) Use a vector method to show that WXY is a straight line.

(3)

10. [5 marks]

OMA, ONB and ABC are straight lines.

M is the midpoint of *OA*. *B* is the midpoint of *AC*.

$$\overrightarrow{OA} = 6\mathbf{a}$$
 $\overrightarrow{OB} = 6\mathbf{b}$ $\overrightarrow{ON} = k\mathbf{b}$ where k is a scalar quantity.

Given that MNC is a straight line, find the value of k.

AB is parallel to DC

$$DC = 2AB$$

M is the midpoint of BC

$$\overrightarrow{AD} = 2\mathbf{b}$$

$$\overrightarrow{AB} = 4\mathbf{a}$$

(a) Find \overrightarrow{BM} in terms of **a** and **b**.

Give your answer in its simplest form.

(2)

N is the point such that DCN is a straight line and DC: CN = 2:1

(b) Show that AMN is a straight line.

In the diagram $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$.

(a) Find \overrightarrow{CA} in terms of **a** and **c**.

(1)

(b) The point *B* is such that $\overrightarrow{AB} = \frac{1}{2} \mathbf{c}$.

Give the mathematical name for the quadrilateral OABC.

(1)

(c) The point P is such that $\overrightarrow{OP} = \mathbf{a} + k\mathbf{c}$, where $k \ge 0$

State the two conditions relating to $\mathbf{a} + k\mathbf{c}$ that must be true for OAPC to be a rhombus.

(2)

OMN is a triangle.

P is the point on OM such that $OP = \frac{1}{4}OM$

Q is the midpoint of ON

R is the midpoint of PN

$$\overrightarrow{OP} = \mathbf{p} \qquad \overrightarrow{OQ} = \mathbf{q}$$

- (a) Find, in terms of **p** and **q**,
 - (i) \overrightarrow{MN}

	\
	$\overline{}$
(::)	ממ
(11)	PK

(2)

(b) Use a vector method to prove that QR is parallel to OP

The diagram shows a parallelogram, PQRS.

M is the midpoint of PS.

$$\overrightarrow{PM} = \mathbf{a} \qquad \overrightarrow{PQ} = \mathbf{b}$$

Diagram **NOT** accurately drawn

(a) Find, in terms of a and/or b,

- (i) \overrightarrow{PS}
- (ii) \overrightarrow{PR}
- (iii) \overrightarrow{MQ}

N is the point on MQ such that $MN = \frac{1}{3}MQ$

(b) Use a vector method to prove that PNR is a straight line.

OABC is a parallelogram.

BCD is a straight line.

BD = 3BC.

M is the midpoint of OC.

$$\overrightarrow{OA} = \mathbf{x}$$
 $\overrightarrow{AB} = \mathbf{y}$

- (a) Find, in terms of x and y,
 - (i) \overrightarrow{AM}

	\rightarrow
(ii)	ΩĎ

(2)

(b) Use your answers to (a)(i) and (ii) to write down two different geometric facts about the lines AM and OD.

PQRS is a parallelogram.

X is the midpoint of QR and Y is the midpoint of SR. $\overrightarrow{PQ} = \mathbf{a}$ and $\overrightarrow{PS} = \mathbf{b}$.

$$\overrightarrow{PO} = \mathbf{a}$$
 and $\overrightarrow{PS} = \mathbf{b}$.

- (a) Write down, in terms of a and b, expressions for
 - (i) \overrightarrow{PX}

(ii) \overrightarrow{PY}

(iii) \overrightarrow{QS}

(3)

(b) Use a vector method to show that XY is parallel to QS and that $XY = \frac{1}{2}QS$.

(2)

17. [5 marks]

OAB is a triangle.

P is the point on OA such that OP: PA = 2:1

C is the point such that B is the midpoint of OC. M is the midpoint of AB.

$$\overrightarrow{OA} = 6\mathbf{a}$$
 $\overrightarrow{OB} = 4\mathbf{b}$

Show that *PMC* is a straight line.

OABC is a parallelogram.

Diagram **NOT** accurately drawn

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \overrightarrow{OC} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}.$$

(a) Find the vector \overrightarrow{OB} as a column vector.

X is the point on OB such that OX = kOB, where 0 < k < 1

- (b) Find, in terms of k, the vectors
 - (i) \overrightarrow{OX} ,

.....

(ii) \overrightarrow{AX} ,

.....

 $(iii) \overrightarrow{XC}$.

(3)

(c) Find the value of k for which $\overrightarrow{AX} = \overrightarrow{XC}$.

(2)

(d) Use your answer to part (c) to show that the diagonals of the parallelogram *OABC* bisect one another.