

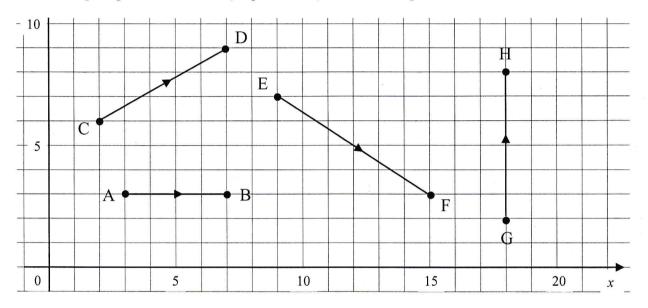
INTRODUCTION TO VECTORS

COLUMN VECTORS

A vector is a quantity that has both **<u>magnitude</u>** (size) **<u>and direction</u>**.

Force & velocity are commonly used vectors in physics, but we focus on 'displacement' vectors in GCSE maths – these give the magnitude and direction of <u>a movement from one point to another</u>.

The following diagram shows four (displacement) vectors on a grid:



Notation:

The notation AB represents the line that is drawn between A and B. The notation \overrightarrow{AB} represents the vector displacement from A to B.

Vector displacements can be described by the change in their horizontal and vertical coordinates – to distinguish a vector from actual coordinates, these horizontal and vertical changes are written in a column, one above the other (x above y).

Examples:

The vectors on the grid above can be described by the following column vectors:

$$\overrightarrow{AB} = \begin{pmatrix} 4\\ 0 \end{pmatrix} \qquad \qquad \overrightarrow{CD} = \begin{pmatrix} 5\\ 3 \end{pmatrix} \qquad \qquad \overrightarrow{EF} = \begin{pmatrix} 5\\ -4 \end{pmatrix} \qquad \qquad \overrightarrow{GH} = \begin{pmatrix} 0\\ 6 \end{pmatrix}$$

Since vectors have direction, every vector has a 'reverse' vector which is in the opposite direction:

$$\overrightarrow{BA} = -\overrightarrow{AB} = \begin{pmatrix} -4\\ 0 \end{pmatrix} \qquad \qquad \overrightarrow{DC} = \begin{pmatrix} -5\\ -3 \end{pmatrix} \qquad \qquad \overrightarrow{FE} = \begin{pmatrix} -5\\ 4 \end{pmatrix} \qquad \qquad \overrightarrow{HG} = \begin{pmatrix} 0\\ -6 \end{pmatrix}$$

© 2017 Maths4Everyone.com

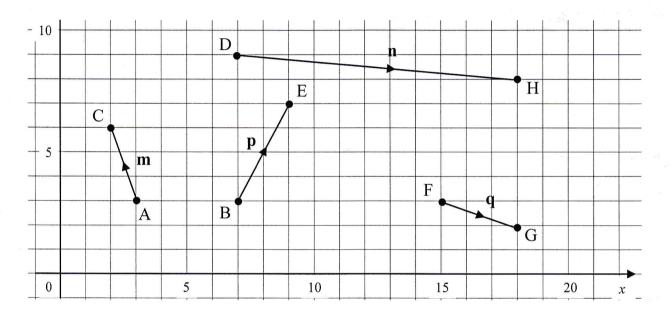
Notes:

The starting and finishing points of a vector are represented using uppercase letters, but vectors themselves are often represented using lowercase letters.

- Within text books (and other <u>printed</u> material) these lowercase letters are printed in **bold**;
- Within hand-written text, vectors are often indicated by using a squiggly underline e.g. \underline{a}

The following diagram shows some different vectors on a grid.

This time the vectors have been labelled using lowercase letters:



$$\mathbf{m} = \begin{pmatrix} -1 \\ 3 \end{pmatrix} \qquad \mathbf{n} = \begin{pmatrix} 11 \\ -1 \end{pmatrix} \qquad \mathbf{p} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
$$-\mathbf{m} = \begin{pmatrix} 1 \\ -3 \end{pmatrix} \qquad -\mathbf{n} = \begin{pmatrix} -11 \\ 1 \end{pmatrix}$$

QUICK TASK:

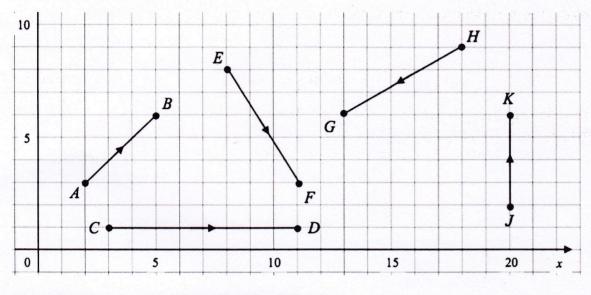
Write the vectors for...

(a)
$$-\mathbf{p} = \begin{pmatrix} -2\\ -4 \end{pmatrix}$$

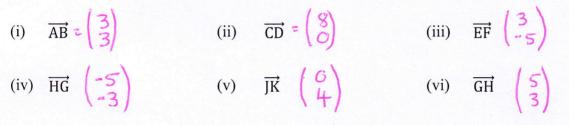
(b) $-\mathbf{q} = \begin{pmatrix} -3\\ 1 \end{pmatrix}$

PRACTICE QUESTIONS 1

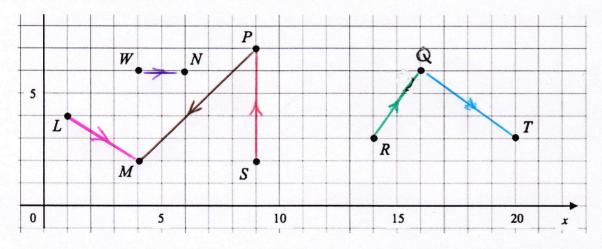
(a) The following diagram shows some vectors on a grid:



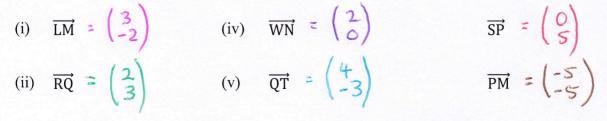
Write the column vectors for each of the following:



(b) The following diagram shows some points on a grid:

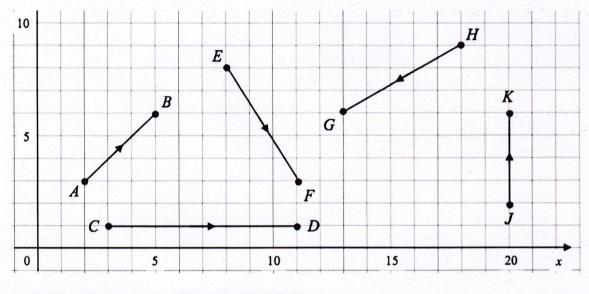


Draw each of the following vectors onto the grid and then write them as column vectors:

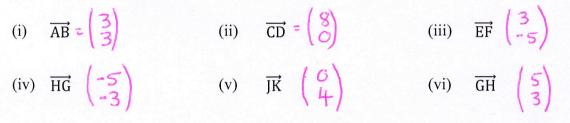


PRACTICE QUESTIONS 1

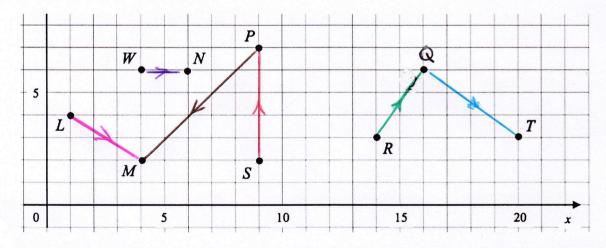
(a) The following diagram shows some vectors on a grid:



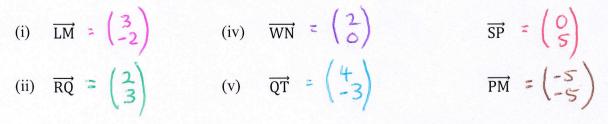
Write the column vectors for each of the following:



(b) The following diagram shows some points on a grid:



Draw each of the following vectors onto the grid and then write them as column vectors:

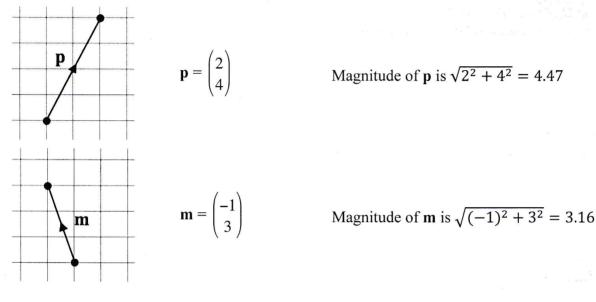


MAGNITUDE OF A VECTOR

The magnitude of a vector is its length.

This can be worked out using Pythagoras.

Examples:



In summary, the magnitude of the vector $\begin{pmatrix} \pm x \\ \pm y \end{pmatrix}$ is $\sqrt{x^2 + y^2}$

PRACTICE QUESTIONS 2

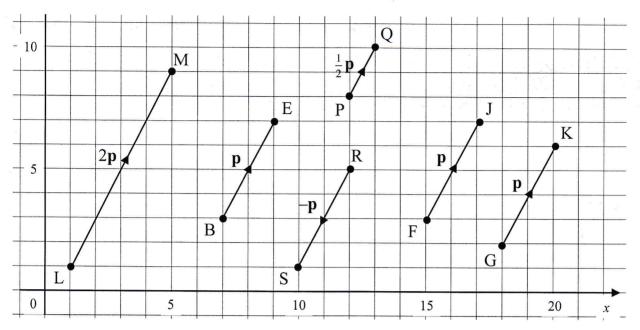
Calculate the magnitude of the following vectors. Give your answers correct to 3 significant figures, when appropriate.

(i)
$$\begin{pmatrix} 3\\2 \end{pmatrix} = \sqrt{3^2 + 2^2}$$

 $= 3 \cdot 6 \uparrow$
(iv) $\begin{pmatrix} -3\\-5 \end{pmatrix} = \sqrt{3^2 + 5^2}$
 $= 5 \cdot 83$
(ii) $\begin{pmatrix} 5\\-2 \end{pmatrix} = \sqrt{5^2 + 2^2}$
 $= 5 \cdot 39$
(v) $\begin{pmatrix} 0\\7 \end{pmatrix} = 7$
VERTICAL LINE
(iii) $\begin{pmatrix} 4\\0 \end{pmatrix}$
 $\downarrow \downarrow \downarrow \downarrow$
HORIZONTAL
LINE

PARALLEL VECTORS

If two vectors are parallel then they either represent exactly the same displacement, or <u>one will be a</u> <u>multiple of the other</u>:



Note that $\overrightarrow{BE} = \overrightarrow{FJ} = \overrightarrow{GK} = \mathbf{p}$

Multiplying vectors:

The diagrams above show that:

$$\overrightarrow{LM} = 2p \qquad \qquad \overrightarrow{PQ} = \frac{1}{2}p \qquad \qquad \overrightarrow{RS} = -p$$
$$= 2 \times \begin{pmatrix} 2 \\ 4 \end{pmatrix} \qquad \qquad = \frac{1}{2} \times \begin{pmatrix} 2 \\ 4 \end{pmatrix} \qquad \qquad = -\begin{pmatrix} 2 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} 4 \\ 8 \end{pmatrix} \qquad \qquad = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad \qquad = \begin{pmatrix} -2 \\ -4 \end{pmatrix}$$

Note:

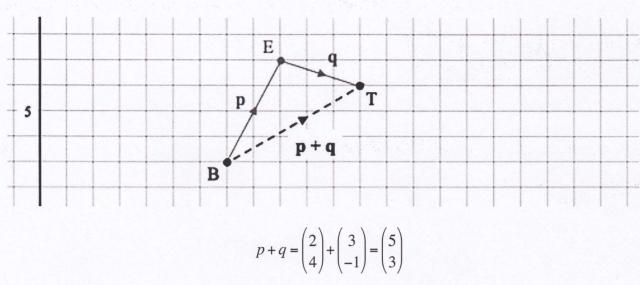
If one vector is a multiple of another vector, then the two vectors must be parallel.

And:

If one vector is a multiple of another vector and they <u>have a point in common</u>, then the two vectors must form a straight line.

ADDITION OF VECTORS

Standard addition:

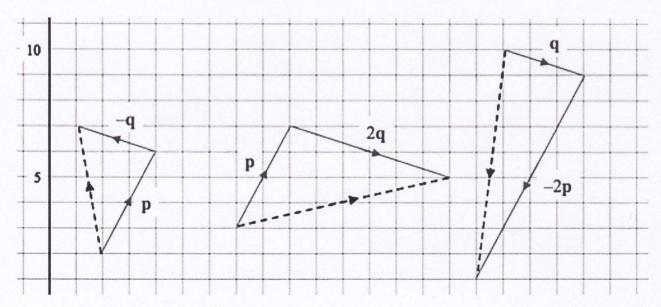


The answer to a vector addition is called the **resultant**

Other 'additions':

$$p-q = \begin{pmatrix} 2\\ 4 \end{pmatrix} - \begin{pmatrix} 3\\ -1 \end{pmatrix} \qquad p+2q = \begin{pmatrix} 2\\ 4 \end{pmatrix} + 2\begin{pmatrix} 3\\ -1 \end{pmatrix} \qquad q-2p = \begin{pmatrix} 3\\ -1 \end{pmatrix} - 2\begin{pmatrix} 2\\ 4 \end{pmatrix} \\ = \begin{pmatrix} 2\\ 4 \end{pmatrix} + \begin{pmatrix} 6\\ -2 \end{pmatrix} = \begin{pmatrix} 8\\ 2 \end{pmatrix} \qquad = \begin{pmatrix} 3\\ -1 \end{pmatrix} - \begin{pmatrix} 4\\ 8 \end{pmatrix} = \begin{pmatrix} -1\\ -9 \end{pmatrix}$$

These additions are shown on the diagram below:



PRACTICE QUESTIONS 3

(a) If
$$a = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
 $b = \begin{pmatrix} -5 \\ 3 \end{pmatrix}$ $c = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$

Write as column vectors: (i) z + b = z + (1) + (-5) = (-4)

(i)
$$a+b = -(4) + (-3) = (-1)$$

(ii) $a+c = (\frac{1}{4}) + (\frac{-2}{-3}) = (-1)$
(iii) $2a = 2(\frac{1}{4}) = (\frac{2}{8})$
(iv) $3c = 3(\frac{-2}{-3}) = (\frac{-6}{-9})$
(v) $2a-3b = 2(\frac{1}{4}) - 3(\frac{-5}{3}) = (\frac{2}{8}) - (\frac{-15}{9}) = (\frac{17}{-1})$
(vi) $2b-c = 2(\frac{-5}{3}) - (\frac{-2}{-3}) = (\frac{-10}{6}) - (\frac{-2}{-3}) = (\frac{-8}{9})$

(b) If
$$p = \begin{pmatrix} -4 \\ 2 \end{pmatrix}$$
 $q = \begin{pmatrix} 0 \\ -7 \end{pmatrix}$ $r = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$

Find:

(i) the magnitude of
$$p = \sqrt{4^2 + 2^2}$$

(ii)
$$2r - q$$
 as a column vector
= $2\begin{pmatrix} -3\\ 1 \end{pmatrix} - \begin{pmatrix} 0\\ -7 \end{pmatrix} = \begin{pmatrix} -6\\ 2 \end{pmatrix} - \begin{pmatrix} 0\\ -7 \end{pmatrix} = \begin{pmatrix} -6\\ 9 \end{pmatrix}$

(iii) the magnitude of q + r

$$q + r = \begin{pmatrix} 0 \\ -7 \end{pmatrix} + \begin{pmatrix} -3 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -6 \end{pmatrix}$$

.". MAGNITUDE = $\sqrt{3^2 + 6^2}$
= 6.71

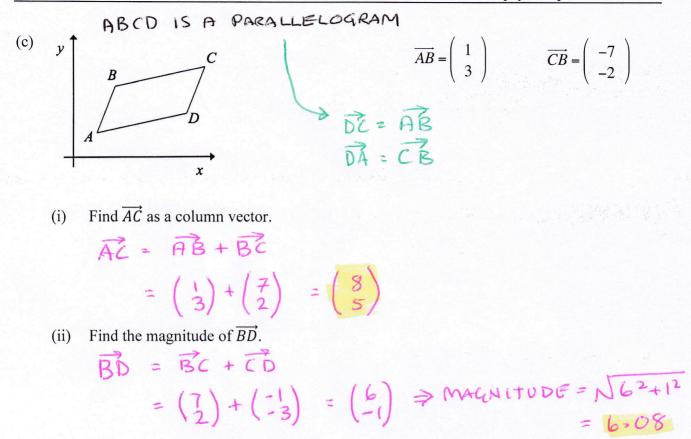
Maths4Everyone.com

Enjoy • Improve • Succeed

6

3d

D



- (d) State what you can deduce from each of the following:
 - (i) $\overrightarrow{LM} = b$ and $\overrightarrow{NP} = 3b$ LM IS PARALLEL TO NP NP IS THREE TIMES LARGER THAN LM
 - (ii) $\overrightarrow{MN} = w$ and $\overrightarrow{ST} = -2w$ ST IS PARALLEL TO MN, BOT IN THE OPPOSITE DIRECTION ST IS TWICE THE SIZE/LENGTH OF MN.
 - (iii) $\overrightarrow{PQ} = m$ and $\overrightarrow{QR} = 2m$ \overrightarrow{PQR} is a straight line \overrightarrow{QR} is twice as LONG as \overrightarrow{PQ}
 - (iv) $\overrightarrow{BC} = 3d$ and $\overrightarrow{DC} = -d$ BCD IS A STRAIGHT LINE BC IS THREE TIMES LONGER THAN DC DCIS IN OPPOSITE DIRECTION TO BC

CORDINATES AND VECTORS

Note the difference between coordinates and (displacement) vectors:

coordinates give the location of a point on a grid

vectors give the change in the location of points.

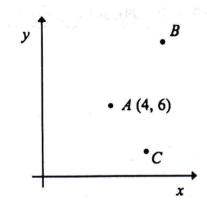
Example 1:

Suppose that $\overrightarrow{AB} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ and $\overrightarrow{AC} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$

If the point *A* has coordinates (4, 6) then:

B will have coordinates (4 + 3, 6 + 5) = (8, 11)

C will have coordinates (4 + 2, 6 + -3) = (6, 3)



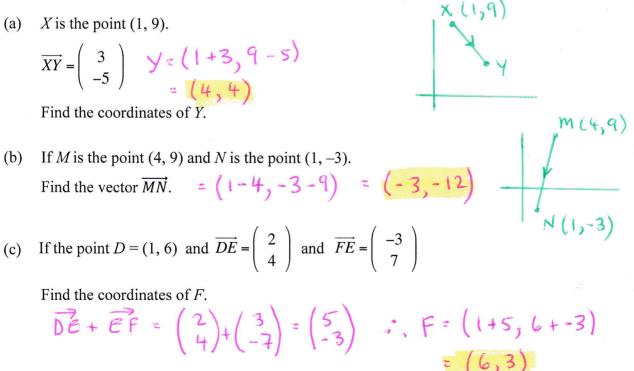
Q

Example 2:

If point P has coordinates (7, 13) and point Q has the coordinates (9, 6)

Then the vector $\overrightarrow{PQ} = \begin{pmatrix} 9-7\\ 6-13 \end{pmatrix}$ $= \begin{pmatrix} 2\\ -7 \end{pmatrix}$

PRACTICE QUESTIONS 4



VECTOR DIAGRAMS

Most of the time at GCSE, we are not concerned with column vectors – we are concerned with finding resultants of vectors using vector diagrams.

In this type of question, you will usually be given a diagram showing interconnections between different points (usually in the shape of a triangle, trapezium, parallelogram etc.). You will also be given two vector displacements, which will be identified by letters.

Your task will be to work out other displacements in terms of the two vectors that are given.

This is best shown by studying the examples that follow.

Example 1

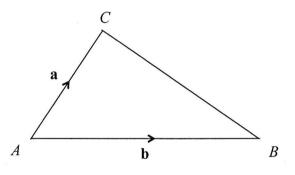


Diagram **NOT** accurately drawn

ABC is a triangle.

 $\overrightarrow{AC} = \mathbf{a}$ and $\overrightarrow{AB} = \mathbf{b}$

Find, in terms of **a** and **b**

(i) \overrightarrow{CB}

(ii) \overrightarrow{BC}

Solution 1:

(i) $\overrightarrow{CB} = \overrightarrow{CA} + \overrightarrow{AB}$ $= -\mathbf{a} + \mathbf{b}$ some point is the END OF \overrightarrow{ONE} vector and start of NEXT (ii) $\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$ $= -\mathbf{b} + \mathbf{a}$

Enjoy • Improve • Succeed

Example 2

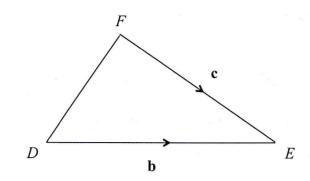


Diagram **NOT** accurately drawn

DEF is a triangle.

 $\overrightarrow{DE} = \mathbf{b}$ and $\overrightarrow{FE} = \mathbf{c}$

Find, in terms of **b** and **c**

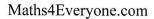
(i)
$$\overrightarrow{DF}$$

(ii) \overrightarrow{FD}

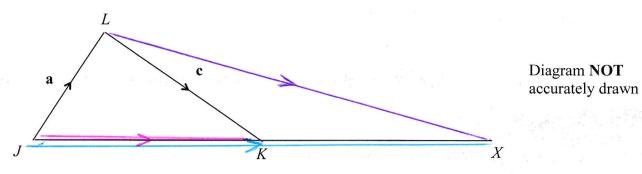
Solution 2:

(i)
$$\overrightarrow{DF} = \overrightarrow{DE} + \overrightarrow{EF}$$

= $\mathbf{b} - \mathbf{c}$
(ii) $\overrightarrow{FD} = \overrightarrow{FE} + \overrightarrow{ED}$
= $\mathbf{c} - \mathbf{b}$



Example 3



JKL is a triangle.

 $\overrightarrow{JL} = \mathbf{a} \text{ and } \overrightarrow{LK} = \mathbf{c}$ $\overrightarrow{JK} = KX \quad \text{important}$ Find, in terms of \mathbf{a} and \mathbf{c} (i) \overrightarrow{JK} (iii) \overrightarrow{JX}

(iii) \overrightarrow{LX}

Solution 3:

(i)
$$\overrightarrow{JK} = \overrightarrow{JL} + \overrightarrow{LK}$$

 $= \mathbf{a} + \mathbf{c}$
(ii) $\overrightarrow{JX} = 2 \times \overrightarrow{JK}$
 $= 2(\mathbf{a} + \mathbf{c})$
 $= 2\mathbf{a} + 2\mathbf{c}$
(iii) $\overrightarrow{LX} = \overrightarrow{LJ} + \overrightarrow{JX}$
 $= -\mathbf{a} + 2(\mathbf{a} + \mathbf{c})$
 $= \mathbf{a} + 2\mathbf{c}$

Enjoy • Improve • Succeed

Maths4Everyone.com

Example 4

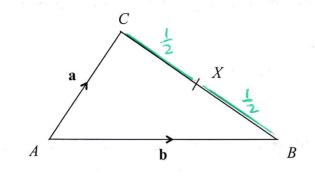


Diagram **NOT** accurately drawn

ABC is a triangle.

 $\overrightarrow{AC} = \mathbf{a} \text{ and } \overrightarrow{AB} = \mathbf{b}$ X is the midpoint of BC (MPORTANT)Find, in terms of \mathbf{a} and \mathbf{b}

- (i) \overrightarrow{CB}
- (ii) \overrightarrow{CX}
- (iii) \overrightarrow{AX}

Solution 4:

(i)
$$\overrightarrow{CB} = \overrightarrow{CA} + \overrightarrow{AB}$$

= $-\mathbf{a} + \mathbf{b}$

(ii)
$$\overrightarrow{CX} = \frac{1}{2} \times \overrightarrow{CB}$$

 $= \frac{1}{2}(-\mathbf{a} + \mathbf{b})$
 $= -\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$

(iii)
$$\overline{AX} = \overline{AC} + \overline{CX}$$

= $\mathbf{a} + \frac{1}{2}(-\mathbf{a} + \mathbf{b})$
= $\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$

Example 5

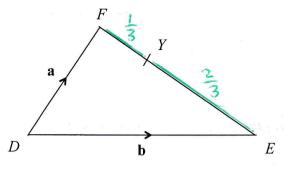


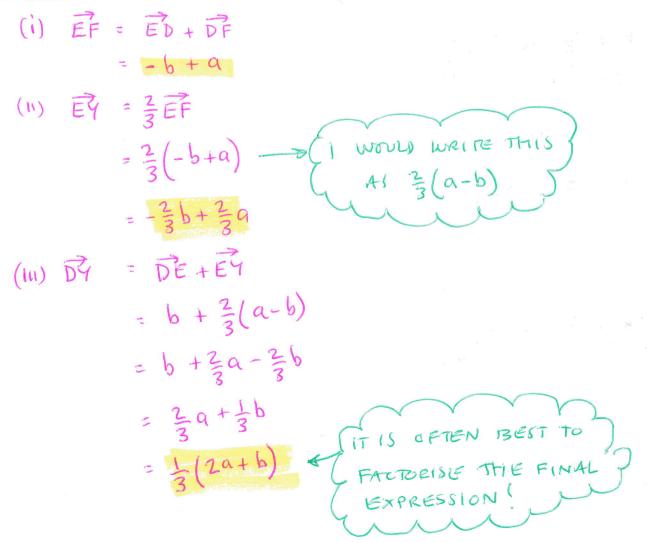
Diagram **NOT** accurately drawn

DEF is a triangle.

 $\overrightarrow{DF} = \mathbf{a} \text{ and } \overrightarrow{DE} = \mathbf{b}$ *Y* is the point on *EF* such that *EY*: *YF* = 2:1, \overrightarrow{OSE} FRACTIONS $\begin{bmatrix} \frac{2}{3} & AND \\ \frac{1}{3} \end{bmatrix}$ Find, in terms of \mathbf{a} and \mathbf{b}

- (i) \overrightarrow{EF}
- (ii) \overrightarrow{EY}
- (iii) \overrightarrow{DY}

Solution 5:



Enjoy • Improve • Succeed

 $JK = \frac{3}{4}JZ$

(i)

(ii)

(iii) \overrightarrow{LZ}

Find, in terms of a and c

JΚ

 \overrightarrow{KZ}

Example 6

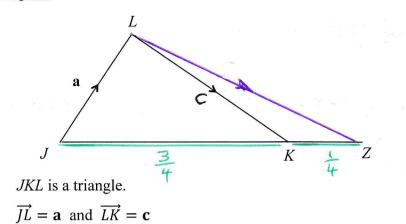
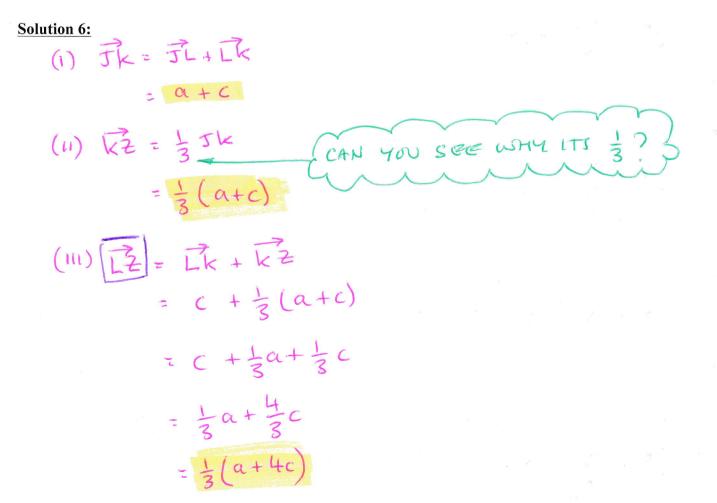


Diagram **NOT** accurately drawn



Maths4Everyone.com

Maths4Everyone.com

Example 7

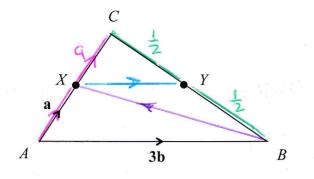


Diagram **NOT** accurately drawn

ABC is a triangle.

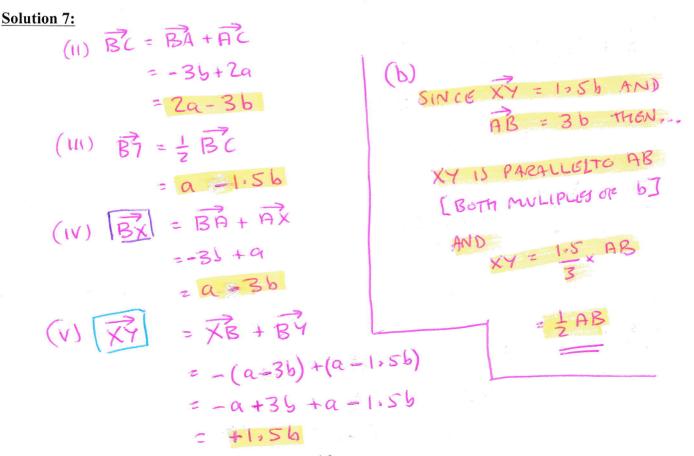
X is the midpoint of AC

Y is the midpoint of BC

$$\overrightarrow{AX} = \mathbf{a}$$
 and $\overrightarrow{AB} = 3\mathbf{b}$

- (a) Find, in terms of **a** and **b**
 - (i) \overrightarrow{AC}
 - (ii) \overrightarrow{BC}
 - (iii) \overrightarrow{BY}
 - (iv) \overrightarrow{BX}
 - (v) \overrightarrow{XY}
- (b) Use a vector method to show that XY is parallel to AB and that $XY = \frac{1}{2}AB$.

 $\overrightarrow{Ac} = 2a$



Enjoy • Improve • Succeed

Example 8

The diagram shows a parallelogram WXYZ.

T is the midpoint of XZ E is the point such that $WE = \frac{1}{3}WX$

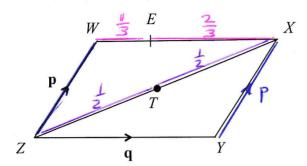
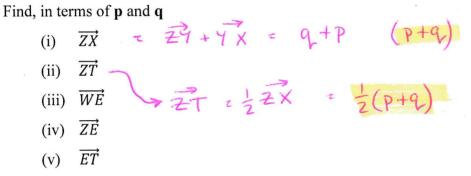


Diagram **NOT** accurately drawn

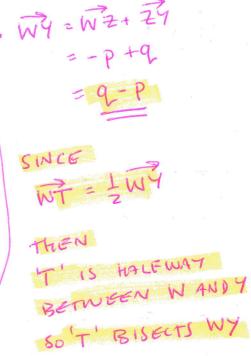
$$ZW = \mathbf{p}$$
 and $ZY = \mathbf{q}$



(b) Use a vector method to show that T bisects WY.

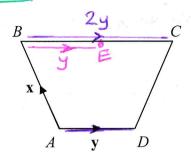
Solution 8:
(110)
$$\overrightarrow{WE} = \frac{1}{3} \overrightarrow{WX} = \frac{1}{3} \overrightarrow{Q}$$

(110) $\overrightarrow{ZE} = \overrightarrow{ZW} + \overrightarrow{WZ}$
 $= \overrightarrow{P} + \frac{1}{3} \overrightarrow{Q}$
(110) $\overrightarrow{ZE} = \overrightarrow{ZW} + \overrightarrow{WZ}$
 $= \overrightarrow{P} + \frac{1}{3} \overrightarrow{Q}$
(110) $\overrightarrow{ET} = \overrightarrow{EW} + \overrightarrow{WZ} + \overrightarrow{ZT}$
 $= -\frac{1}{3} q_{1} + (-p) + \frac{1}{2} (p+q_{1})$
 $= -\frac{1}{2} p_{1} + \frac{1}{6} q_{1}$
(b) $\overrightarrow{WT} = \overrightarrow{WZ} + \overrightarrow{ZT}$
 $= -p + \frac{1}{2} (p+q_{1})$
 $= \frac{1}{2} (q-p)$



PRACTICE QUESTIONS 5

1. The diagram shows a trapezium *ABCD*.



$$\overrightarrow{BC} = 2\overrightarrow{AD}. = 2\mathbf{y}$$
$$\overrightarrow{AB} = \mathbf{x}. \quad \overrightarrow{AD} = \mathbf{y}.$$

- (a) Find, in terms of x and y,
 - (i) \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = 2c + 2y

(ii)
$$\overrightarrow{DC} = \overrightarrow{DA} + \overrightarrow{AC}$$

= $-y + (x + 2y)$
= $x + y$

or+ 2y BD

(b) The point
$$\overline{E}$$
 is such that $\overline{AE} = \mathbf{x} + \mathbf{y}$.
Use your answer to part (a)(ii) to explain why AECD is a parallelogram.
 $\overrightarrow{AE} = \overrightarrow{DC}$, So \overrightarrow{AE} and \overrightarrow{DC} \overrightarrow{ARE} $\overrightarrow{PARALLEL}$ (B)
 $\overrightarrow{EC} = \frac{1}{2} \overrightarrow{BC}$
 $= \frac{1}{2} \times 2\mathbf{y}$
 $= \frac{1}{2} \times 2\mathbf{y}$
 $= 4\overrightarrow{D}$, So \overrightarrow{EC} and \overrightarrow{AD} \overrightarrow{RE} $\overrightarrow{PARALLEL}$
 $= 4\overrightarrow{D}$, So \overrightarrow{EC} and \overrightarrow{AD} \overrightarrow{RE} $\overrightarrow{PARALLEL}$

2.

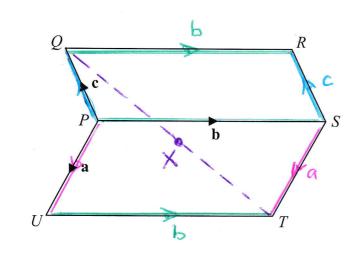
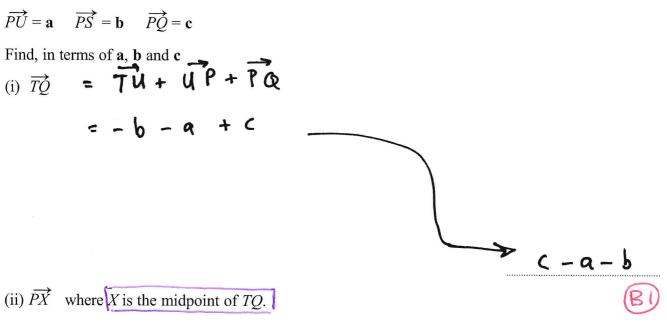


Diagram **NOT** accurately drawn

PQRS and PSTU are parallelograms.



Simplify your answer as much as possible.

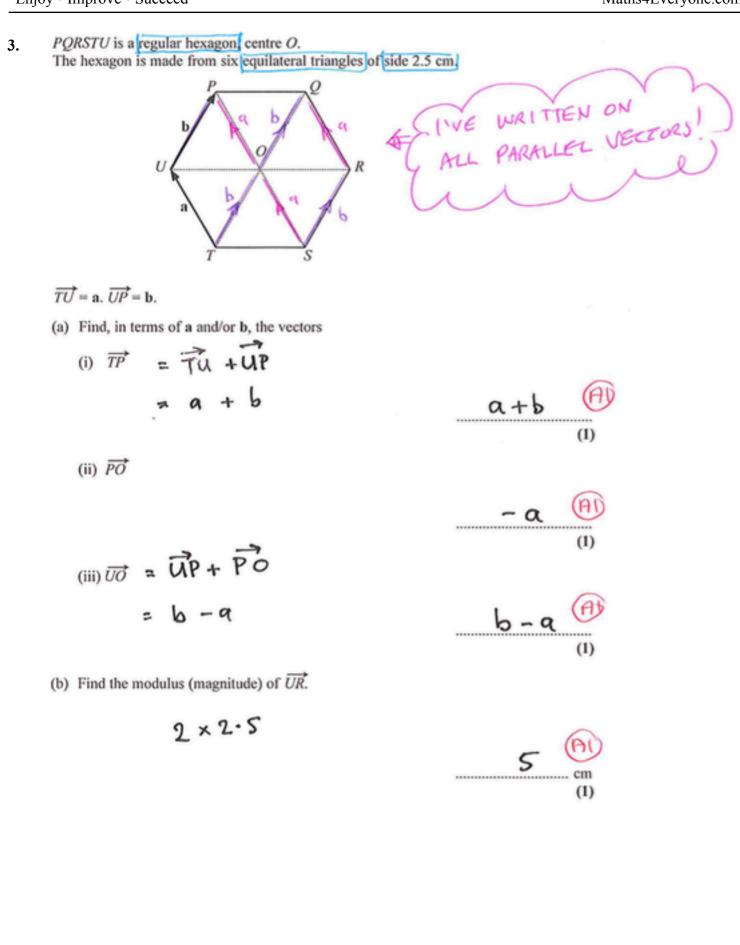
$$\vec{PX} = \vec{Pu} + \vec{uT} + \frac{1}{2}\vec{TQ}$$

$$= a + b + \frac{1}{2}(c - a - b) \quad (m)$$

$$= a + b + \frac{1}{2}c - \frac{1}{2}a - \frac{1}{2}b$$

$$= \frac{1}{2}a + \frac{1}{2}b + \frac{1}{2}c \qquad (A)$$

$$= \frac{1}{2}(a + b + c)$$



4. *OABC* is a parallelogram.

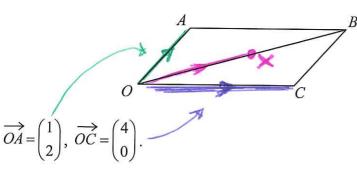


Diagram **NOT** accurately drawn

(1)

(a) Find the vector \overrightarrow{OB} as a column vector.

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

X is the point on OB such that OX = kOB, where 0 < k < 1

(b) Find, in terms of k, the vectors (i) \overrightarrow{OX} , = $k \times \overrightarrow{OB} = k \begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 5k \\ 2k \end{pmatrix} \stackrel{\text{(A)}}{\cancel{AV}}$ (ii) \overrightarrow{AX} , = $\overrightarrow{AO} + \overrightarrow{OX} = -\begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 5k \\ 2k \end{pmatrix} = \begin{pmatrix} 5k \\ 2k - 2 \end{pmatrix} \stackrel{\text{(A)}}{\cancel{AV}}$ (iii) \overrightarrow{XC} . = $\overrightarrow{XO} + \overrightarrow{OC}$ = $-\begin{pmatrix} 5k \\ 2k \end{pmatrix} + \begin{pmatrix} 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 4-5k \\ -2k \end{pmatrix} \stackrel{\text{(A)}}{\cancel{AV}}$ (3)

(c) Find the value of k for which $\overrightarrow{AX} = \overrightarrow{XC}$. $\begin{pmatrix} Sk-1\\ 2k-2 \end{pmatrix} = \begin{pmatrix} 4-5k\\ -2k \end{pmatrix} \Rightarrow Sk-1 = 4-5k \quad \text{(m)}$ $\Rightarrow 10k = 5 \quad \text{(4)} \quad \text{(2)}$

(d) Use your answer to part (c) to show that the diagonals of the parallelogram *OABC* bisect one another.

SINCE
$$k = \frac{1}{2}$$
, X IS MIDPOINT OF \overrightarrow{OB} (M)
 $\overrightarrow{AX} = (5 \times 0.5 - 1) = (1.5)$
 $(2 \times 0.5 - 2) = (-1)$
SAME SO X IS MIDPOINT
 $\overrightarrow{XC} = (4 - 5 \times 0.5)$
 $(-1) = (1.5)$
 $(-1) = (1.5)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$
 $(-1) = (-1)$

5. PQR is a triangle. *E* is the point on *PR* such that PR = 3PE. *F* is the point on *QR* such that QR = 3QF.

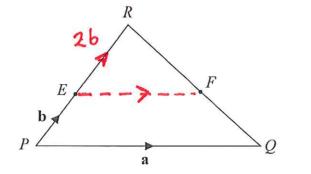


Diagram **NOT** accurately drawn

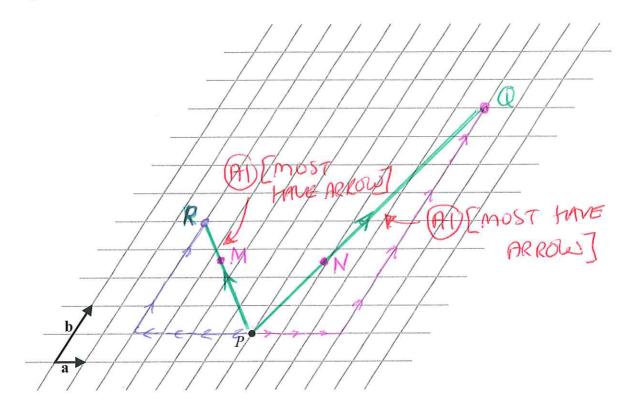
3P

$$\overrightarrow{PQ} = \mathbf{a}, \qquad \overrightarrow{PE} = \mathbf{b}.$$

(a) Find, in terms of a and b,

(i)
$$\overrightarrow{PR}$$

(ii) \overrightarrow{QR} $\overrightarrow{QP} + \overrightarrow{PR} = -a + 3b$ (iii) \overrightarrow{PF} $\overrightarrow{PQ} + \frac{1}{3} \overrightarrow{QR} = a + \frac{1}{3}(-a + 3b)$ $= \frac{1}{3}a + b$ (i) Show that $\overrightarrow{EF} = k \overrightarrow{PQ}$ where k is an integer. $\overrightarrow{EF} = \overrightarrow{EP} + \overrightarrow{PF}$ $= -b + \frac{2}{3}a + b$ $= \frac{1}{3}a \cancel{A1}$ $= k \overrightarrow{PQ}$ WHERE $k = \frac{2}{3}$ (i) \overrightarrow{PR} $\overrightarrow{PR} = \frac{1}{3}a$ (i) \overrightarrow{PR} $\overrightarrow{PR} = \frac{1}{3}a$ (i) \overrightarrow{PR} (i) $\overrightarrow{PR} = -b + \frac{2}{3}a + b$ (i) $\overrightarrow{PR} = \frac{1}{3}a$ 6. The diagram shows a grid of equally spaced parallel lines. The point P and the vectors **a** and **b** are shown on the grid.



$$\overrightarrow{PQ} = 3\mathbf{a} + 4\mathbf{b}$$

(a) On the grid, mark the vector \overrightarrow{PQ}

 $\overrightarrow{PR} = -4\mathbf{a} + 2\mathbf{b}$

- (b) On the grid, mark the vector \overrightarrow{PR}
- (c) Find, in terms of **a** and **b**, the vector \overrightarrow{QR}

$$\vec{QR} = -4b - 3a - 4a + 2b$$

= -7a - 2b

$$\overrightarrow{QR} = -7a - 2b$$
(1)

(1)

(1)

PQR is a triangle. 7. M and N are the midpoints of PQ and PR respectively.

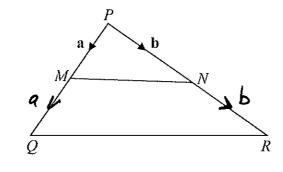


Diagram NOT accurately drawn

b-a

(2)

$$\overrightarrow{PM} = \mathbf{a}$$
 $\overrightarrow{PN} = \mathbf{b}.$

(a) Find, in terms of a and/or b,

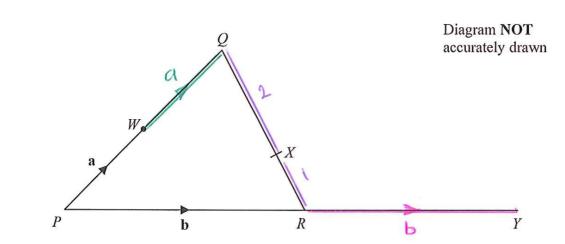
(i)
$$\vec{MN} = \vec{MP} + \vec{PN}$$

= -q + b

$$(ii) \overrightarrow{PQ} = \overrightarrow{PM} + \overrightarrow{MQ}$$
$$= 2a$$

....

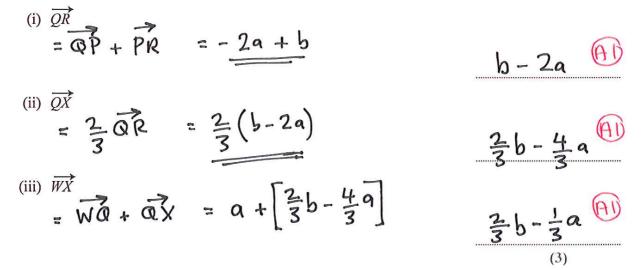
(b) Use your answers to (a)(i) and (iii) to write down two geometrical facts about the lines MN and QR. SO QR iS PARALLEL TO MN R = 2 MNAND OR is twice the LENGTHORMN 8.



PQR is a triangle. The midpoint of PQ is W. X is the point on QR such that QX : XR = 2 : 1PRY is a straight line.

$$\overrightarrow{PW} = \mathbf{a} \ \overrightarrow{PR} = \mathbf{b}$$

(a) Find, in terms of a and b,



R is the midpoint of the straight line PRY.

(b) Use a vector method to show that WXY is a straight line.

$$\overline{XY} = \overline{XR} + \overline{RY}$$

$$= \frac{1}{3}\overline{QR} + \overline{RY}$$

$$= \frac{1}{3}\sqrt{b-2a} + b$$

$$= \frac{1}{3}b - \frac{2}{3}a + b$$

$$= \frac{1}{3}b - \frac{2}{3}a + b$$

$$= \frac{4}{3}b - \frac{2}{3}a = \frac{2}{3}(2b-a)$$

$$= \frac{$$